77范文网 - 专业文章范例文档资料分享平台

MIT公开课-线性代数笔记

来源:网络收集 时间:2018-12-11 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

目录

方程组的几何解释 ................................................................................................................ 4 矩阵消元 ............................................................................................................................... 4 乘法和逆矩阵 ....................................................................................................................... 6 A的LU分解......................................................................................................................... 7 转置-置换-向量空间R .......................................................................................................... 9 求解AX=0:主变量,特解................................................................................................. 10 求解AX=b:可解性和解的解构 ......................................................................................... 11 线性相关性、基、维数 ....................................................................................................... 13 四个基本子空间 .................................................................................................................. 14 矩阵空间、秩1矩阵和小世界图 ........................................................................................ 15 图和网络 ............................................................................................................................. 16 正交向量与子空间 .............................................................................................................. 17 子空间投影 ......................................................................................................................... 20 投影矩阵与最小二乘 .......................................................................................................... 22 正交矩阵和Gram-Schmidt正交化 ..................................................................................... 23 特征值与特征向量 .............................................................................................................. 29 对角化和A的幂 ................................................................................................................. 30 微分方程和exp(At)(待处理) .......................................................................................... 31 对称矩阵与正定性 .............................................................................................................. 31 正定矩阵与最小值 .............................................................................................................. 33 相似矩阵和若尔当型(未完成) ........................................................................................ 34

奇异值分解(SVD) ............................................................................................................... 35 线性变换及对应矩阵 .......................................................................................................... 36 基变换和图像压缩 .............................................................................................................. 38

NOTATION p:projectionvector P:projectionmatrix e:errorvector P:permutationmatrix

T:transport sign

C(A):columnspace N(A):null space U:uppertriangular L:lower triangular E:elimination matrix

Q:orthogonalmatrix, which the

means column vectors are orthogonal

E:elementary/elimination matrix, which always appears in the elimination of matrix N:null space matrix, the “solution matrix” of AX=0

R:reduced matrix, which always appears in the triangular matrix, “IF00” I:identity matrix S:eigenvector matrix Λ:eigenvalue matrix C:cofactor matrix

关于LINER ALGEBA名垂青史的分析方法: 由具象到抽象,由二维到高维。

方程组的几何解释

1. 行图像,列图像 2. 矩阵乘法:

方法一. 列向量的线性组合 方法二. 左行乘以右列

3. 矩阵右乘向量(竖直):矩阵列的线性组合 4. 矩阵左乘向量(横平):矩阵行的线性组合

矩阵消元

1. 课程目标:讨论消元法有效,以及无效的情况 用矩阵语言描述消元法

2. 消元有效和失效

a) 消元目标:把A矩阵化为U矩阵(主元不能出现0) b) 消元失效:主元是0:行交换可以解决主元为0的暂时性失效,但当底下的行中再也没有非0元素时,消元就彻底失效了。 3. 用矩阵来表示矩阵变换(消元) a) 例

?121??100??121???????目的:从r2中减去3倍r1381???????????310381????????041??001??041???????E21?121??100??121???????目的:从r3中减去2倍r202?2??????????01002-2??????

?0-21??005??041???????E32?100???310b) 针对上一例,假设总变换E=E32E21,E????,这个?6?21???矩阵对于消元法中出现的乘数来说太不直观了,然而E-1=E21-1E32-1,这个逆比较直观,因为它们是初等列变换的逆变换,只用改变乘数的系数就可以得到它们的逆,这就引出了下一章的内容:A的LU分解。

?|?|??|?|?||||||||?-??-?-??-

?|?|??|?|?----

?a??|??|??|??|???????????b|||??=a??+b??+c??+d?|? ?c??|??|??|??|????????????d??|??|??|??|??abcd?----

-?

?-?-??-?

=a??????+b??????+c??????+d?????? 4. 置换矩阵

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库MIT公开课-线性代数笔记在线全文阅读。

MIT公开课-线性代数笔记.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/360516.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: