(a)在使一个酮(例如丙酮酸)还原成次级醇(例如乳酸)反应中用的辅酶。 (b)在使初级醇(例如乙醇)氧化为醛(例如乙醛)反应中用的辅酶。 (c)在依赖ATP的羧化(例如丙酮酸羧化生成草酰乙酸)反应中用的辅基。 (d)在脱羧和转醛基(例如丙酮酸脱羧形成乙醛)反应中用的辅基。 (e)在转甲酰基或甲叉基(羟甲基)反应中用的辅酶。 (f)在转乙酰基或更长的脂酰基反应中用的辅酶。
(g)在从氨基酸的α碳上去除或取代基团的反应中用的辅基。
答:(a)NADH(还原型烟酰胺腺嘌呤二核苷酸)或者NADPH(还原型烟酰胺腺嘌呤二核苷酸磷酸),在上述两种情况下都是由烟酸衍生的。 (b)NAD(烟酰胺腺嘌呤二核苷酸),由烟酸衍生的。(c)生物胞素(一种生物素-Lys残基),由生物素衍生的。(d)TPP(硫胺素焦磷酸);由硫胺素(维生素B1)衍生的。 (e)四氢叶酸,由叶酸衍生的。(f)CoA(辅酶A),由泛酸衍生的。(g)PLP(吡哆醛-5-磷酸),由吡哆醇(维生素B6)衍生的。
2、某哺乳动物肝脏样品在三氯甲烷和水的混合物中匀浆,维生素A、B6、C、D各分布在哪一相中?
答: 在水相中将会发现维生素B6和维生素C,在有机相中将会发现脂溶性的维生素A和D。
3、人对烟酸(尼克酸)的需要量为每天 7.5毫克。当饮食中给予足量的色氨酸时,尼克酸的需要量可以降低。由此观察,尼克酸与色氨酸的代谢有何联系?当饮食是以玉米为主食,而肉类很少时,人们易得癞皮病,为什么这种情况会导致尼克酸的缺乏,你能给予说明吗?
答:烟酸既是生物合成色氨酸所必需的,又可以由色氨酸合成。玉米中色氨酸的含量低。
4、在一个典型的实验中,给予鸽子的一种实验饲料,浙渐地发现它们无法推持平衡及协调。而且它们的血液及脑中的丙酮酸比正常鸽子高出许多。若喂给鸽子肉汁,则此症状可以防止或改善。你能解释这个现象吗? 答:硫胺素缺乏。
5、在冰箱内鸡蛋可保持4到6周仍不会变坏,但是去除蛋白的蛋黄,即使放在冰箱也很快地变坏。
(a)什么因素因素使蛋黄变坏的呢?(b)你如何解释鸡蛋蛋白可以防止蛋黄变坏? (c)这种保护模式对鸟类有什么益处? 答:(a)细菌生长(b)抗生物素蛋白结合游离的生物素抑制细菌生长(c)在孵卵期,它保护了发育的胚胎免受破坏性细菌的生长。
6、 请写出维生素B1、B2的名称及它们的辅酶形式,它们是什么酶的辅酶? 怎样防止夜盲症、佝偻病、脚气病和坏血症? 答:分别服用维生素A、D、B1、C。
7、为什么维生素A及D可好几个星期吃一次,而维生素B复合物就必须经常补充? 答:维生素A和D是脂溶性的维生素,可以贮存。但B族维生素是水溶性的,不能贮存,即维生素B复合物的高溶解度导致了其快速排泄,所以必须经常补充。
8、角膜软化症是因维生素A缺乏,而使眼球乾燥及失去光泽,甚至造成失明。这种疾病危害很多小孩,但很少影响大人。在热带地区,每年约有10000个年纪18到36个月的小孩,因罹患此病而致瞎,相反大人即使食用维生素A缺乏的食物2年以上,结果只是患有夜盲症而已。当给予维生素A,则夜盲症很容易消失。请您解释为什么维生素A缺乏对小孩及大人的影响的差异会这么大?
答:成熟的肝脏储存维生素A。
9、肾性骨发育不全,或称肾性佝楼症,这种疾病主要是骨骼矿物质排除过多。肾病患者,即使给予均衡饮食,仍然会有肾性骨发育不全发生。请问哪一种维生素与骨骼矿物质化有关?为什么肾脏受损会造成骨骼矿物质排除过多。
答:维生素D3;受损的肾脏妨碍维生素D3完全羟化形成其生物活性形式
糖
1、已知一个只含有C、H和O的未知物质是从鸭肝中分离出的。当0.423g该物质在过量氧气存在下完全燃烧后生成0.620gCO2和0.254gH2O。该物质的实验式与糖的是否一致?
答: 一致;该物质的实验式为CH2O,是一种典型的糖。
2、醛糖的羰基氧可以还原为羟基,醛糖转化为糖醇,当D-甘油醛还原为甘油后,为什么不再命名为D-或L-甘油了呢?
答: 当甘油醛的羰基还原为羟基后,C-1和C-3的化学特性相同,所以甘油分子不是一个手性分子。
3、蜂蜜中的果糖主要是β-D-吡喃糖。它是已知最甜的一种物质,其甜度大约是葡萄糖的两倍。但β-D-呋喃型果糖的甜度就低得多了。在温度高时,蜂蜜的甜味逐渐减少。高浓度果糖的玉米糖浆常用来增强冷饮而不是热饮饮料的甜味,这是利用了果糖的什么化学性质?
答:因为果糖既可环化生成吡喃糖,也可环化成呋喃糖。增加温度会使平衡倾向于甜味较少的呋喃果糖生成的方向。
4、刚制备的D-α-半乳糖溶液(1克/毫升,在10cm小室中)的旋光度为+150.7°,放置一段时间后,溶液的旋光度逐渐降低,最后达到平衡值:+80.2°,而刚制备的D-b-半乳糖溶液(1克/毫升)旋光度只有+52.8°,但逐渐增加,过一段时间后,亦变为+80.2°。
(a)画出a,b两种构型的Haworth投影式,两构型的特征表现在哪?(b)为什么刚制备的a型溶液其旋光度随时间渐减?而等浓度的a型和b型在达到平衡时其旋光度又相同?
(c)试计算平衡时两种构型半乳糖各占百分比是多少? 答:(a) (b)新制备的α-D-半乳糖溶液经变旋作用形成α和β型的平衡混合物。 (c)28%α型,72%β型。
5、蔗糖(旋光度为+66.5°)水解生成等摩尔的D-葡萄糖(旋光度为+52.5°)和D-果糖(旋光度为-92°)的混合物。
(a)提出一方便的方法,以确定由小肠壁提取的转化酶水解蔗糖的速率。
(b)为什么由蔗糖水解形成的等摩尔D-葡萄糖和D-果糖的混合液在食品工业上被称之转化糖?
(c)转化酶(即蔗糖酶)作用于蔗糖溶液至混合液的旋光度变为0时,多少蔗糖被水解? 答:(a)监测旋光度随时间的变化。 (b)混合物的旋光度相对于蔗糖溶液的旋光度是负值(由原来的正值转化为负值)。 (c)63%蔗糖。 6、乳糖存在二个异构体,但蔗糖没有异构体,如何解释? 答:因为蔗糖没有游离异头碳,蔗糖是个还原糖。
7、纤维素和糖原都是由D-葡萄糖残基通过(1→4)连接形成的聚合物,但它们的物理特性差别很大。例如从棉花丝得到的几乎纯的纤维素是坚韧的纤维,完全不溶于水。相反从肌肉或肝脏中得到的糖原容易分散到热水中,形成混浊液。这两种聚合糖的什么结构特征
使得它们的物理特性有这么大的差别?纤维素和糖原的结构特征确定了它们的什么生物学作用?
答:天然纤维素是由通过β(1→4)糖苷键连接的葡萄糖单位组成的,这种糖苷键迫使聚合物链成伸展的构型。这种一系列的平行的聚合物链形成分子间的氢键,它们聚集成长的、坚韧的不溶于水的纤维。糖原主要是由通过α(1→4)糖苷键连接的葡萄糖单位组成的,这种糖苷键能引起链弯曲,。防止形成长的纤维。另外糖原是个具有高分支(通过α(1→6))的聚合物。它的许多羟基暴露于水,可被高度水合,因此可分散在水中。 纤维素由于它的坚韧特性,所以它是植物中的结构材料。而糖原是动物中的贮存燃料。带有许多非还原末端的高度水合的糖原颗粒可被糖原磷酸化酶快速水解释放出葡萄糖-1-磷酸。
8、青霉素是如何发挥它的抗菌作用的?
答:青霉素的抗菌作用是抑制肽聚糖合成中的一步特殊的反应,肽聚糖是革兰氏阳性菌细胞壁的主要成分。青霉素抑制催化肽聚糖合成的最后一步反应的转肽酶。青霉素的结构类似于转肽酶底物末端的二肽D-Ala-D-Ala的结构。
9、某些糖蛋白的寡糖部分可以作为细胞的识别部位。为了执行这一功能,寡糖部分应当具有形成多种结构形式的潜力。如果寡肽是由5个不同氨基酸残基组成,寡糖是由5个不同的单糖残基组成,那么是寡肽还是寡糖产生的结构的多样性更多?
答:寡糖;它的单糖单位要比寡肽的氨基酸单位的结合方式更多。因为每个单糖的羟基都可以参与糖苷键的形成,而且每个糖苷键的构型既可以是α型,也可以是β型。聚合物可以是线性的,也可以是带有分支的。
脂和生物模
1、 在 pH=7时,判断下列物质的带电状况?
(a)磷脂酰胆碱 (b)磷脂酰乙醇胺 (c)磷脂酰丝氨酸 答:(a)0 (b)0 (c)-1
2、 按相变温度由低到高,将下列磷脂酰胆碱排序,并解释排序的理由。
二油酰磷脂酰胆碱 (18:1,顺式双键), 二反油酰磷脂酰胆碱(18:1,反式双健), 二亚麻酰磷脂酰胆碱(18:2顺式双键), 二硬脂酰磷脂酰胆碱(18:0)
答: 二亚麻酰磷脂酰胆碱,二油酰磷脂酰胆碱,二反油酰磷脂酰胆碱,二硬脂酰磷脂酰胆碱。由于一个反式双键并不引起脂酰链的弯折,所以并不降低Tm;而顺式双键则相反,引入弯折降低Tm,两个顺式双键在脂酰键中产生两个弯折从而比一个顺式双键更大程度地增加流动性。
3、 下列十八碳的脂肪酸的熔点分别是:硬脂酸( 69.6°),油酸( 13.4°),亚油酸(-5°),亚麻酸( -11°)。(a)它们的结构与相应的熔点有什么相关性?(b)画出由甘油、软脂酸和油酸构成的可能的三脂酰甘油的结构式,并按照熔点逐渐增加的排序。(c)某些细胞的膜脂中含有支链脂肪酸,它们的存在是增加还是降低膜的流动性(即具有较低或较高的熔点),为什么? 答:(a)顺式双键数;每一顺式双键都引起碳氢链的一个弯曲,可降低熔点。(b)可以构成6种不同的三脂酰甘油,按熔点次序排:OOO < OOP =OPO < PPO=POP < PPP,这里的O代表油酸,P代表软脂酸。(c)支链脂肪酸能增加膜的流动性,因为它们可以降低膜脂的堆积。
4、 清除动物脂肪沉积的最常见的办法是使用一些含有氢氧化钠的产品,这是什么道理?
答:动物脂肪主要成分是三脂酰甘油,它可以被氢氧化钠水解(皂化),生成肥皂,肥皂在水中的溶解度比脂肪高得多。
5、 假设你在超市上发现了两种都是由100%玉米油制造的黄油,但一种是通过使玉米油氢化制造的,另一种是通过乳化制造的。哪一种黄油含有更多的不饱和脂肪酸?
答:通过乳化工艺制造的黄油含有更多的不饱和脂肪酸。因为氢化是使不饱和脂肪酸转变为饱和脂肪酸。
6、 一些药物必须在进入活细胞后才能发挥药效,但它们中大多是带电或有极性的,因此不能靠被动扩散跨膜。人们发现利用脂质体运输某些药物进入细胞是很有效的办法,试解释脂质体是如何发挥作用的。 答:脂质体是脂双层膜组成的封闭的、内部有空间的囊泡。离子和极性水溶性分子(包括许多药物)被包裹在脂质体的水溶性的内部空间,负载有药物的脂质体可以通过血液运输,然后与细胞的质膜相融合将药物释放入细胞内部。
7、 一个红细胞的表面积大约为100μm2,从4.7×109个红细胞分离出的膜在水中形成面积为0.890m2的单层膜。从这个实验就细胞膜的构成能得出什么结论? 答:由一个红细胞的膜铺成的单层面积为[0.890×1012μm2]/(4.74×109)=188。由于红细胞表面积只有100μm2,所以覆盖红细胞表面积的脂是双层的,即188/100≈2。换言之红细胞膜是由双层脂构成的。 8、 脂质体是一个连续的自我封闭的脂双层结构。 (a)脂双层形成的驱动力是什么? (b)生物膜的结构对生物有什么重要作用? 答:(a)形成双层的磷脂分子是两性分子(含有亲水和疏水部分)。脂双层的形成是由磷脂的疏水作用驱动的,这时磷脂疏水的脂酰链倾向于脱离与水的接触,水溶液中的磷脂分子的非极性尾部被水分子包围,磷脂分子之间为避开水疏水尾部彼此靠近,当磷脂双层结构形成时,脂酰链被限制在疏水的内部,而排挤出有序的水分子。该过程导致这些水分子的熵大大增加,熵增加的量大大地超过由于更多有序的脂双层的形成导致熵减少的量。增加的熵以及脂双层中的相邻的非极性尾部之间的范德华接触对有利的(负的)自由能变化都有贡献,因此整个过程可以自发进行。
(b)生物膜主要是由蛋白质、脂质、多糖类组成,形成一个流动的自封闭体系,它对生物的作用主要体现在以下方面: 1、 可以提供一个相对稳定的内环境。
2、 生物膜可以进行选择性的物质运输,保证生物体的正常生理功能。
3、 生物膜与信号传导、能量传递、细胞识别、细胞免疫等细胞中的重要过程相关。总之,生物膜使细胞和亚细胞结构既各自具有恒定、动态的内环境,又相互联系相互制约。 9、 许多埋在膜内的蛋白(内在蛋白)与细胞中的蛋白质不同,它们几乎不可能从膜上转移至水溶液中。然而,此类蛋白的溶解和转移,常可用含有十二烷基硫酸钠或其它的去污剂,例如胆酸的钠盐等溶液来完成,这是什么道理?
答:十二烷基磺酸钠和胆酸钠等去污剂,都具有亲水和疏水两部分,它们可以破坏蛋白与膜之间的疏水相互作用,并用疏水部分结合蛋白的疏水部分,亲水部分向外,形成一个可溶性微团,将蛋白转移到水中。
10、 将某细菌从37℃的生长温度转移至25℃后,利用什么手段可以恢复膜的流动性?
答:通过生产更多的不饱和脂肪酸链或较短的脂肪酸链可恢复膜的流动性。因为在较低的生长温度下,细菌必须合成具有更低Tm(高流动性)的不饱和脂肪酸或短的脂肪酸链,才能恢复膜流动性。
核 酸
1、 比较蛋白质α螺旋中的氢键和DNA双螺旋中的氢键,并指出氢键在稳定这两种结构中的作用。
答: 在α-螺旋中,一个残基上的羧基氧与旋转一圈后的(该残基后面)第四个残基上的α-氨基中的氮形成氢键,这些在肽链骨架内原子间形成的氢键大致平行于该螺旋的轴,氨基酸侧链伸向骨架外,不参与螺旋内的氢键形成。在双链DNA中糖-磷酸骨架不形成氢键,相反在相对的两条链中互补的碱基之间形成2个或3个氢键,氢键大致垂直于螺旋轴。
在α-螺旋中,单独的氢键是很弱的,但是这些键的合力稳定了该螺旋结构。尤其是在一个蛋白质的疏水内部,这里水不与氢竞争成键。在DNA中形成氢键的主要作用是使每一条链能作为另一条链的模板,尽管互补碱基之间的氢键帮助稳定螺旋结构,但在疏水内部碱基对之间的堆积对螺旋结构的稳定性的供献更大。
2、 一段双链DNA包含1000个碱基,其组成中G+C占58%,那么在DNA的该区域中胸腺嘧啶残基有多少?
答: 如果58%的残基是G+C,42%的残基必定为A+T。因为每一个A与相对链上的一个T相配,A残基的数量与T残基的数量相等,因而21%或420个残基为T(2000×0.21=420)。 3、 双螺旋DNA一条链的碱基序列为(5ˊ)GCGCAATATTTCTCAAAATATTGCGC-3ˊ,写出它的互补链。该DNA片段中含有什么特殊类型的序列?该双链DNA有能力形成另外一种结构吗? 答:(5ˊ)GCGCAATATTTTGAGAAATATTGCGC-3ˊ,含有回文序列;单链内可形成发卡结构;双链可形成十字结构。 4、 用适当的碱基取代下面序列中的X,给出一个完整的反向重复结构。 5ˊG-A-T-C-A-T-X-X-X-X-X-X 3ˊ 3ˊX-X-X-X-X-X-X-X-X-X-X-X 5ˊ
答: 5ˊG-A-T-C-A-T-A-T-G-A-T-C 3ˊ 3ˊC-T-A-G-T-A-T-A-C-T-A-G 5ˊ 5、 两个DNA分子,其长度相等,碱基组成不同,一个含有20%(A+T),另一个含有60% (A+T),哪个分子的Tm较高?
答:含有20%(A+T)的DNA分子具有更高的Tm。因为它含有80%(G+C)。因为G-C碱基对之间存在3个氢键,所以使富含G/C的DNA变性需要更多的能量。 6、 有二个DNA样品,分别来自两种未确认的细菌,两种DNA样品中的腺嘌呤碱基含量分别占它们DNA总碱基的32%和17%。这两个DNA样品的腺嘌呤,鸟嘌呤,胞嘧啶和胸腺嘧啶的相对比例是多少?其中哪一种DNA是取自温泉(64℃)环境下的细菌,哪一种DNA是取自嗜热菌?答案的依据是什么?
答:一个DNA含量为32%A、32%T、18%G和18%C,另一个为17%A、17%T、33%G和33%C,均为双链DNA。前一种取自温泉的细菌,后一种取自嗜热菌,因为其G-C含量高,变性温度高因而在高温下更稳定。 7、 溶液A中含有浓度为1M的20个碱基对的DNA分子,溶液B中含有0.05M的400个碱基对的DNA分子,所以每种溶液含有的总的核苷酸残基数相等。假设DNA分子都有相同的碱基组成。
(a)当两种溶液的温度都缓慢上升时,哪个溶液首先得到完全变性的DNA? (b)哪个溶液复性的速度更快些? 答:(a)溶液A中的DNA将首先被完全变性,因为在20个碱基对螺旋中的堆积作用力比在400个碱基对螺旋中的力小很多,在DNA双链的末端的DNA的碱基对只是部分
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库生物化学习题及答案(2)在线全文阅读。
相关推荐: