77范文网 - 专业文章范例文档资料分享平台

代数学引论(聂灵沼_丁石孙版)第一章习题答案(4)

来源:网络收集 时间:2018-11-30 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

2. 假设当i≠j时,1-xia+x1=1-xja+x1,则xia=xja,故xiax1=xjax1,因此xi=xj,产生矛盾. 42. 设L是一个至少有两个元素的环. 如果对于每个非零元素a∈L都有唯一的元素b使得

aba=a.

证明:

(i) L无零因子; (ii) bab=b;

(iii) L有单位元素; (iv) L是一个体. 证明:

(i) 先证明L无左零因子,假设a为L的一个左零因子,那么a≠0,且存在c≠0,使得ac=0,于是cac=0. 因a≠0,则存在唯一b使得aba=a.但

a(b+c)a=a,b+c≠b

产生矛盾,所以L无左零因子.

类似可证L无右零因子.

(ii) 因aba=a,所以abab=ab. 由(i)的结论知L无零因子,因此满足消去律,而a≠0,故bab=b.

(iii) 我们任一选取a(≠0)∈L,再设aba=a(这里b是唯一的),首先证明ab=ba.因为

a(a2b-a+b)a=a,

所以a2b-a+b=b,即a2b=a=aba,由消去律得到ab=ba.

任取c∈L,则ac=abac,故此c=(ba)c=(ab)c;另一方面,ca=caba,故此c=c(ab).综上得到c=(ab)c=c(ab),所以ab就是单位元素,我们记ab=ba=1.

(iv) 由(iii)可知任意a(≠0)∈L,ab=ba=1,即任意非零元素都可逆,因此L成为一个体.

43. 令C[0,1]为全体定义在闭区间[0,1]上的连续函数组成的环.证明: (i) 对于的任一非平凡的理想I,一定有个实数,,使得f()=0对所有的f(x)∈I; (ii) 是一零因子当且仅当点集 {x∈[0,1]|f(x)=0} 包含一个开区间. 证明:

(i) 证明思路:设I为非零的非平凡理想,假设对任意x∈[0,1],存在f(x)∈I使得f(x)≠0,想法构造一个g∈I可逆.

(ii) 提示:用连续函数的局部保号性.

44. 令F=Z/pZ为p个元素的域.求 (i) 环Mn(F)的元素的个数; (ii) 群GLn(F)的元素的个数.

45. 设K是一体,a,b∈K,a,b不等于0,且ab≠1.证明华罗庚恒等式:

a-(a-1+(b-1-a)-1)-1=aba.

证明:

因为a-(a-1+(b-1-a)-1)-1=aba?1-(a-1+(b-1-a)-1)-1a-1=ab?(aa-1+a(b-1-a)-1)-1=1-ab? (1+a(b-1-a)-1)-1=1-ab?(1+((ab)-1-1)-1)-1=1-ab,为了方便记x=ab,那么1-x,x,x-1-1都可逆,只要证明(1+(x-1-1)-1)-1=1-x即可,或者证明1+(x-1-1)-1=(1-x)-1即可. 因为

1+(x-1-1)-1=1+(x-1-x-1x)-1=1+(1-x)-1x=(1-x)-1(1-x) +(1-x)-1x=(1-x)-1,

所以结论成立,即a-(a-1+(b-1-a)-1)-1=aba.

16

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库代数学引论(聂灵沼_丁石孙版)第一章习题答案(4)在线全文阅读。

代数学引论(聂灵沼_丁石孙版)第一章习题答案(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/324170.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: