【分享】立方体折叠专题一
一. 判断给定的平面图形是否属正方体表面展开图
1.最长的一行(或列)在中间,可为2、3、4个,超过4?个或长行不在中间的不是正方体表面展开图.
2.在每一行(或列)的两旁,每旁只能有1个正方形与其相连,超过1个就不是.
3.规律:
① 每一个顶点至多有3个邻面,不会有4个或更多个. ② “一”形排列的三个面中,两端的面一定是对面,字母相同. ③ “L”形排列的三个面中,没有相同的字母,即没有对面,只有邻面.
二. 快速确定正方体的“对面” 口诀是:相间、“Z”端是对面
如下图,我们先来统一以下认识:
把含有图(1)所示或可由其作旋转后的图形统称为“I”型图;把所给平面图中含有(2)、(3)、(4)所示或可由其作旋转后的图形统称为“Z ”型图。
结论:
如果给定的平面图形能折叠成一个正方体,那么在这个平面图形中所含的“I”型图或“Z”型图两端的正方形(阴影部分)必为折成正方体后的对面。 应用上面的结论,我们可以迅速地确定出正方体的“对面”。
例1.如图,一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是 .
分析:自—信—沉—着—超,构成了竖着的Z字型,所以“自”与“超”对应,故应填“自”.
三. 间二、拐角邻面知
中间隔着两个小正方形或拐角型 的三个面是正方体的邻面.
例2.如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是( )
分析:我们把画有圆的一面记为a面,正方形阴影面记为b面,三角形阴影面记为c面.
在选项A中,由Z字型结构知b与c对面,与已知正方体bc相邻不符,应排除;在选项B中,b面与c面隔着a面,b面与c面是对面,也应排除;在选项D中,虽然a、b、c三面成拐角型,是正方体的三个邻面,b面作为上面,a面为正面,则c面应在正方体的左面,与原图不符,应排除,故应选(C).
四. 正方体展开图:
相对的两个面涂上相同颜色
五. 找正方体相邻或相对的面
1.从展开图找.(1)正方体中相邻的面,在展开图中有公共边或公共顶点.如或在正方形长链中相隔两个正方形.如
,?
中A与D.(2)在正方体中相对的面,
在展开图中同行(或列)中,中间隔一个正方形.如ABCD中,A与C,B与D,或和中间一行(或列)?均相连的两正方形亦相对.
例1 右图中哪两个字所在的正方形,在正方体中是相对的面.
解 “祝”与“似”,“你”和“程”,“前”和“锦”相对. 例2 在A、B、C内分别填上适当的数.
使得它们折成正方体后,对面上的数互为倒数,则填入正方形A、B、C?的三数依次是:
1111,,1 (B),,1 23321111 (C)1,, (D),1,
2323(A)
分析 A与2,B与3中间都隔一个正方形,C与1分处正方形链两边且与其相连,选(A). 例3 在A、B、C内分别填上适当的数,使它们折成正方体后,对面上的数互为相反数.
分析 A与0,B与2,C和-1都分处正方形链两侧且与其相连,
∴A─0,B─-2,C─1.
例4 找出折成正方体后相对的面.
解 A和C,D和F,B和E是相对的面. 2.从立体图找.
例5 正方体有三种不同放置方式,问下底面各是几?
分析 先找相邻的面,余下就是相对的面.
上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对.再看6,?和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,?下底面依次是2、5、1. 例6 由下图找出三组相对的面.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库空间重构类图形推理不看后悔在线全文阅读。
相关推荐: