77范文网 - 专业文章范例文档资料分享平台

配套小学三年级奥数举一反三

来源:网络收集 时间:2018-11-13 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

第1讲 找规律

一、知识要点

按照一定次序排列起来的一列数,叫做数列。如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。善于发现数列的规律是填数的关键。 二、精讲精练

【例题1】在括号内填上合适的数。 (1)3,6,9,12,( ),( ) (2)1,2,4,7,11,( ),( ) (3)2,6,18,54,( ),( ) 练习1:在括号内填上合适的数。 (1)2,4,6,8,10,( ),( ) (2)1,2,5,10,17,( ),( ) (3)2,8,32,128,( ),( ) (4)1,5,25,125,( ),( ) (5)12,1,10,1,8,1,( ),( ) 【例题2】先找出规律,再在括号里填上合适的数。 (1)15,2,12,2,9,2,( ),( ) (2)21,4,18,5,15,6,( ),( ) 练习2:按规律填数。

(1)2,1,4,1,6,1,( ),( ) (2)3,2,9,2,27,2,( ),( ) (3)18,3,15,4,12,5,( ),( ) (4)1,15,3,13,5,11,( ),( ) (5)1,2,5,14,( ),( )

【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,( ) (2)252,124,60,28,( ) (3)1,2,5,13,34,( ) (4)1,4,9,16,25,36,( )练习3:按规律填数。

(1)2,3,5,9,17,( ),( ) (2)2,4,10,28,82,( ),( (3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),(

))【例题4】根据前面图形里的数的排列规律,填入适当的数。 (1) (2)

(3)

(1) (2) (3)

8 5 10 9 14 7 12 9 13

14 11 16 841629 12 3 4 27 36 8714944336 12

练习4:找出排列规律,在空缺处填上适当的数。

3 5 7 9 8 12 12 16 14

10 14 7288 16 4 8 16 32 9627845 15 12 7 21 18 9 27

32 16 64

【例题5】按规律填数。

(1)187,286,385,( ),( ) (2)

23 31 41 23 35 24 2541 4643 练习5:根据规律,在空格内填数。 (1)198,297,396,( ),( ) (2) (3)

37 25 32 54 23 45 21 45 32 34 57 3864 2665 25 3895 2775 第2讲 有余除法

一、知识要点

把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全部分完,还有一种是有剩余,并且剩余的本数必须比小朋友的人数少,否则还可以继续分下去。每次除得的余数必须比除数小,这就是有余数除法计算中特别要注意的。

解这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。

在有余数的除法中,要记住:(1)余数必须小于除数;(2)被除数=商×除数+余数。 二、精讲精练

【例题1】 [ ]÷6=8……[ ],根据余数写出被除数最大是几?最小是几? 【思路导航】除数是____,根据____________,余数可填_____________.根据____________,又已知商、除数、余数,可求出最大的被除数为6×8+5=53,最小的被除数为______________。列式如下:________________________________________

答:被除数最大是53,最小是______。 练习1:

(1)下面题中被除数最大可填________,最小可填_______。[ ]÷8=3……[ ] (2)下面题中被除数最大可填________,最小可填_______。[ ]÷4=7……[ ] (3)下题中要使除数最小,被除数应为________。 [ ]÷[ ]=12……4 【例题2】算式[ ]÷[ ]=8……[ ]中,被除数最小是几?

【思路导航】题中只告诉我们商是8,要使被除数最小,那么只要除数和余数小就行。余数最小为______,那么除数则为______。

根据这些,我们就可求出被除数最小为:8×______+______=_______。 练习2:

(1)下面算式中,被除数最小是几?

①[ ]÷[ ]=4……[ ] ②[ ]÷[ ]=7……[ ] ③[ ]÷[ ]=9……[ ]

(2)下面算式中商和余数相等,被除数最小是几?

①[ ]÷[ ]=3……[ ] ②[ ]÷[ ]=6……[ ] (3)算式[ ]÷8=[ ]……[ ]中,商和余数都相等,那么被除数最大是几? 【例题3】算式28÷[ ]=[ ]……4中,除数和商分别是______和______。 【思路导航】根据“被除数=商×除数+余数”,可以得知“商×除数=被除数-余数”,所以本题中商×除数=28-4=24。这两个数可能是1和24,____和____,____和____,____和____,又因为余数为4,因此除数可以是24,12,8,6,商分别为____,____,____,

____。 _________________________________________________________________

答:除数和商分别是24,1;____,____;____,____;____,____。 练习3:

(1)下面算式中,除数和商各是几?

①22÷[ ]=[ ]……4 ②65÷[ ]=[ ]……2 ③37÷[ ]=[ ]……7 ④48÷[ ]=[ ]……6 (2)149除以一个两位数,余数是5,请写出所有这样的两位数。

__________________________________________________________________________ (3)算式[ ]÷4=[ ]……[ ]中,商和余数相等,被除数可以是哪些数? __________________________________________________________________________ 【例题4】算式[ ]÷7=[ ]……[ ]中,商和余数相等,被除数可以是哪些数?

【思路导航】题目中告诉我们除数是7,商和余数相等,因为余数必须比除数小,所以余数和商可为1,2,3,4,5,6,这样被除数就可以求出来了。

7×1+1=8 7×2+2=16 7×3+3=24 7×4+4=32 7×5+5=40 7×6+6=48 答:被除数可以是8,16,24,32,40,48。 练习4:

(1) 下列算式中,商和余数相等,被除数可以是哪些数?

①[ ]÷6=[ ]……[ ] ②[ ]÷5=[ ]……[ ] ③[ ]÷4=[ ]……[ ] ④[ ]÷3=[ ]……[ ] (2)一个三位数除以15,商和余数相等,请你写出五个这样的除法算式。

(3) 算式[ ]÷9=[ ]……[ ]中,商和余数相等,被除数最大是____。

【例题5】算式[ ]÷[ ]=[ ]……4中,除数和商相等,被除数最小是几? 【思路导航】题目中告诉我们余数是4,除数和商相等,因为余数必须比除数小,所以除数必须比4大,但其中要求最小的被除数,因而除数应填_______,商也是______。由算式____________________,所以被除数最小是__________。

练习5:下面算式中,除数和商相等,被除数最小是几?

(1)[ ]÷[ ]=[ ]……6 (2)[ ]÷[ ]=[ ]……8 (3)[ ]÷[ ]=[ ]……3 (4)[ ]÷[ ]=[ ]……9 (5)[ ]÷[ ]=[ ]……7

第3讲 配对求和

一、知识要点

被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。

数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

计算等差数列的和,可以用以下关系式: 等差数列的和=(首项+末项)×项数÷2 末项=首项+公差×(项数-1) 项数=(末项-首项)÷公差+1 二、精讲精练

【例题1】你有好办法算一算吗? 1+2+3+4+5+6+7+8+9+10=( )

练习1:速算。

(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100

(3) 21+22+23+24+……+100

【例题2】计算。

(1) 21+23+25+27+29+31 (2) 312+315+318+321+324

练习2:计算。

(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188

【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?

练习3:

(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?

(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?

(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?

【例题4】计算992+993+994+995+996+997+998+999。

练习4:计算。

(1) 95+96+97+98+99 (2) 2006+2007+2008+2009

(3) 9997+9998+9999 (4) 100-1-3-5-7-9-11-13-15-17-19

【例题5】计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81

练习5:计算。

(1) 1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1

(2) 1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19

(3) 2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16

第4讲 加减巧算

一、知识要点

在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。

进行加减巧算时,凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。另外,可以结合加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。 二、精讲精练

【例题1】你有好办法迅速算出结果吗?

(1) 502+799-298-98 (2) 9999+999+99+9

练习1:计算。

(1) 308+203-399-97 (2) 99999+9999+999+99+9

(3) 1999+199+19 (4) 375+483+525+617

【例题2】计算。

(1) 487+321+113+279 (2) 736-567+264

(3) 877+345-677 (4) 528-248-152

练习2:计算。

(1) 321+127+73+279 (2) 235-125+365

(3) 987-733-167 (4) 487+(413-89)

【例题3】计算下面各题。

(1) 962-(284+262) (2) 432-(154-168)

练习3:计算。

(1) 421+(279-125) (2) 812+(168-112)

(3) 823-(175+323) (4) 538-(283-162)

【例题4】2000-111-89-112-88-113-87-114-86-115-85-116-84

练习4:计算。

(1) 800-99-1-98-2-97-3-96-4-95-5 (2) 1000-10-20-30-40-50-60-70-80-90

【例题5】计算: 98+97-96-95+94+93-92-91+90+89-88-87……-4-3+2+1

练习5:计算。

(1) 2009+1+2-3-4+5+6-7-8+9+10-11-12+13+14……+2006

(2) 1+2-3+4+5-6+7+8-9……+97+98-99

第5讲 图形个数

一、知识要点

同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。

要正确数出图形的个数,关键是要从基本图形入手。首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。 二、精讲精练

【例题1】数出下图中有多少条线段?

ABCD【思路导航】方法一:我们可以采用以线段左端点分类数的方法。以A点为左端点的线段有:AB、AC、AD 3条;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。所以,图中共有线段3+2+1=6(条)。

方法二:把图中线段 AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。所以,图中一共有3+2+1=6(条)线段。

练习1:

(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?

ABCDEABCD【例题2】数出图中有几个角?

O【思路导航】数角的个数可以采用与数线段相同的方法来数。

方法一:以OA为一边的角有:∠AOB、∠AOC、∠AOD 3个;以OB为一边的角还有: ∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1个。所以,图中共有角3+2+1=6(个)。

方法二:把图中∠AOB、∠BOC、∠COD看做基本角来数,那么,由1个基本角构成的角有:∠AOB、∠BOC、∠COD 3个;由2个基本角构成的角有: ∠AOC、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。所以,图中一共有3+2+1=6(个)角。

练习2:数出图中有几个角? A(1) (2)

BABCDE

OCPO【例题3】数出右图中共有多少个三角形?

ABCD【思路导航】方法一:我们可以采用按边分类数的方法。以PA为边的三角形有:△PAB、

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库配套小学三年级奥数举一反三在线全文阅读。

配套小学三年级奥数举一反三.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/271579.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: