08-09学年昌平区初三年级二模试题
数学
1.?2的倒数是
1A.2 1B.2 C.2
?
D.?2
2.五边形的内角和是
A.180? B.360? C.540? D.720?
3.若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是 A.外离 B.相交 C.内切 D.外切
?x?1,?4.以?y??1为解的二元一次方程组是
?x?y?0?x?y?0?x?y?0?x?y?0????x?y?1x?y?2x?y??1A.? B.? C.? D.?x?y??2
5. 如图,把一种量角器放置在?BAC上面,
B请你根据量角器上的等分刻度判断?BAC的度数是
A.15? B.20? C.30? D.45?
6.下图是同一副扑克中的4张扑克牌的正面,将它们小明从中抽出一张,则抽到偶数的概率是
AOC正面朝下洗匀后放在桌上,
13B.2 C.4
7.如图,数轴上点P表示的数可能是
1A.3 2D.3
P-4-3-2-101234A.7 B.?7 C.?3.2 D.?10 33?101??x?222时,二次函数y?x?2x?3的最小值为 8.当
1511??A.?4 B.4 C.2 D.2
二、填空题(共4道小题,每小题4分,共16分) 9.某市为防止土地沙漠化,计划从2009年到2012年新增林地面积2 400 000亩,将2 400 000用科学记数法表示应为 . 10.我们知道圆、矩形是轴对称图形,请你再写出一个轴对称图形为 .
DC111.已知一组数据1,-2,0,-2,x,1的平均数是6,则这组数据的众数是 .
12.如图,正方形ABCD的面积为1,M是AB的中点,连接AC、DM,则图中阴影部分
?的面积是 .
三、解答题(共5道小题,每小题5分,共25分)
AMB?1?12????cos45????3??3?13.计算:.
?1
214.把代数式ax?4ax?4a分解因式.
2x1?215.计算:x?1x?1.
16.已知:如图,在?O中,弦AB、CD交于点E,AD?CB. 求证:AE?CE.
DAECOB
x2?y2?xyx?x?1???x2?y???2217.已知.求的值.
四、解答题(共2道小题,每小题5分,共10分)
18.如图,点P在半?O的直径BA的延长线上,AB?2PA,PC切半?O于点C,连结BC. (1)求?P的正弦值; C(2)若半?O的半径为2,求BC的长度.
P
AOB
19.为了预防甲型H1N1流感,某校在周六那天用“药熏消毒法”对教室进行消毒.已知药物释放过程中,室内每立方米
空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为所示.根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,对人无危害,那么 从这次药物释放开始什么时间段内,学生在教室有危害?
y(毫克)
A1
B 0.5 o3t(小时)
五、解答题(本题满分6分)
20.今年昌平区初三学生的体育加试在5月完成,加试项目共三项,分别为:随机抽测项目(篮球)、必考项目(耐久跑:男生1000米,女生800米)和限制选项(男生实心球或引体向上,女生仰卧起坐或实心球),各项满分10分. 夏明同学随机调查并统计本校的若干名初三学生有关体育加试的情况:
被调查学生参加考试情况统计表 参加考试情况 按时参加考试 参加缓考 免体 18 2 人数(单位:人) 被调查学生按时参加限制选项统计图 被调查学生加试的各项平均分统计图 129.9实心球(男)实心球(女)9910 8 7.5%8
6平均分
4 仰卧起坐2 50%0
引体向上 5% 图1 图2 请你根据以上信息解答下列问题:
(1)在图1中,选择仰卧起坐的女生共40人,请补全图1和统计表; (2)图1中表示参加实心球(女)的扇形的圆心角的度数;
(3)在图2中,若耐久跑的平均分是其他各项平均分的中位数,请补全图2; (4)通过以上数据,你发现了什么,谈谈自己的看法或建议. 六、解答题(共2道小题,21题5分,22题4分,共9分) 21.列方程(组)或不等式(组)解应用题: 净朋家政公司要临时招聘室内、室外两种家政员工共150人,室内、室外两种员工每月的保底工资分别为600元和1000元.因工作需要,要求室外员工的人数不可低于室内员工人数的2倍,那么招聘室内员工多少人时,可使此家政公司每月付的保底工资最少?最少为多少元?
实心球仰卧起坐引体向上耐久跑篮球y?at(a为常数),如图
22.在平行四边形网格中,若它的每一个小平行四边形其中一边和这边上的高均为1个单位长,这样的平行四边形我们称为单位平行四边形.如图所示的每一个小平行四边形中,水平方向的边长均为1个单位.
(1)直接写出单位平行四边形的面积及图1中的四边形ABCD(顶点都在小平行四边形的顶点上)的面积; (2)请你在图2中画出两个面积都是12的图形,并使它们关于点O对称. D C O AB 七、解答题(本题满分7分) 图123.请阅读下列材料: 图2ab我们规定一种运算:cd?ad?bc23?2?5?3?4?10?12??2,例如:45.
20.5 的计算结果;
?1按照这种运算的规定,请解答下列问题:(1)直接写出 ?2x0.5?x?012x(2)当x取何值时, ; 0.5x?18(3)若
yx?30.5?y??7?1,直接写出x和y的值.
八、解答题(本题满分7分)
24.如图1,在平面直角坐标系xOy中,已知直线AC的解析式为点A.
y??323x?33,直线AC交x轴于点C,交y轴于
(1)若一个等腰直角三角板OBD的顶点D与点C重合,求直角顶点B的坐标; (2)若(1)中的等腰直角三角板绕着点O顺时针旋转,旋转角度为
时,求?的值;
2??0????180??,当点B落在直线AC上的点B?处
(3)在(2)的条件下,判断点B?是否在过点B的抛物线y?mx?3x上,并说明理由.
yyABAB'oC(D)xoCDx
图1 图2
九、解答题(本题满分8分)
25. 图1是边长分别为4和3的两个等边三角形纸片ABC和C?D?E?叠放在一起(C与C?重合).
(1)固定△ABC,将△C?D?E?绕点C顺时针旋转30?得到△CDE,连结AD、BE(如图2).此时线段BE与AD有怎样的数量关系?并证明你的结论;
(2)设图2中CE的延长线交AB于F,并将图2中的△CDE在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△QRP(如图3).设△QRP移动(点P、Q在线段CF上)的时间为x秒,若△QRP与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出自变量x的取值范围;
(3)若固定图1中的△C?D?E?,将△ABC沿C?E?方向平移,使顶点C落在C?E?的中点处,再以点C为中心顺时针旋转
?一定角度,设?ACC???30????90??,边BC交D?E?于点M,边AC交D?C?于点N(如图4).此时线段C?N?E?M的值是否随?的变化而变化?如果没有变化,请你求出C?N?E?M的值;如果有变化,请你说明理由.
A AAA BR DD'FD' NEP图1 图2 图3 M图4 BE'C(C')BC(C')BQ
CE'CC' 数学试卷答案及评分参考 2009.6
一、选择题(共8道小题,每小题4分,共32分) 1 2 题号 答案
B C 3 D 4 C 5 A 6 C 7 B 8 B
二、填空题(共4道小题,每小题4分,共16分) 9 题号 答案 10 11 1 12 2.4?10 6线段、等腰三角形等 13 三、解答题(共5道小题,每小题5分,共25分) ?1?12????cos45????3??3?13.解:
?23?3?2?32 ························································································ 4分
?1?23?22. ······························································································ 5分
214.解:ax?4ax?4a
=a(x?4x?4) ····························································································· 2分 =a(x?2). ································································································· 5分
222x1?215.解:x?1x?1
2xx?1?=(x?1)(x?1)?x?1??x?1? ·········································································· 2分
2x?(x?1)=(x?1)(x?1) ······························································································· 3分 x?1=(x?1)(x?1) ······························································································· 4分 1=x?1. ······································································································· 5分
16.证明:∵同弧所对的圆周角相等,
??A??C,?D??B. ???????????????????????2分
在△ADE和△CBE中,
??A??C,??AD?CB,??D??B,? ·································································································· 3分 ?△ADE≌△CBE. ···················································································· 4分 ?AE?CE. ······························································································· 5分
17.解:
x?x?1???x2?y???2
,???????????????????????1分
x?y?2. ················································································· 2分
x2?y2?xy2∴
x2?y2?2xy2= ······························································································ 3分 (x?y)22= ····································································································· 4分
?2. ·········································································································· 5分
四、解答题(共2道小题,每小题5分,共10分) 18.(1)证明:如图,连接OC. ∵PC切半?O于点C,
CDPAOB
??PCO?90?.???????1分
∵AB?2PA,
?PA?OA?OB?OC.
OC1?Rt△PCOOP2. ·在中,······························································ 2分 (2)过点O作OD?BC于点D,则BC?2BD. ·············································· 3分
1?sin?P?2,
sin?P???P?30?, ??POC?60?.
∵OC?OB,
??B??OCB?30?. 在Rt△OBD中,OB?2,
?BD?OB?cos30??3. ············································································· 4分 ?BC?23. ······························································································ 5分
a0.5?3 19.解:(1)由题意,得
3a?2, ∴
333y?2?(t?)t2t2. ·∴···················································································· 1分
3t?2, 当y?1时,
3?A(,1)2.
设OA的解析式为y?kt.
∴∴
1?k?32,
k?23,
y?23t(0?t?)32. ·································································· 2分
∴OA的解析式为
注:不写自变量的取值范围不扣分. (2)当t?0.25时,
0.25?23t1t1?3,即8. ····················································································· 3分
30.25?2t2,即t2?6. ······················································································ 4分
3小时?t?6小时8答:从这次药物释放开始,在内,学生在教室有危害. ················· 5分
五、解答题(本题满分6分)
20.解:(1)图1中,实心球(男)所占的百分比为37.5%,统计表中填80. ············ 2分 (2)27?. ·································································································· 3分 (3)耐久跑的平均数是9,图略. ····································································· 4分 (4)只要符合以上数据所反映的现象,且积极健康即可得分. ································ 6分 六、解答题(共2道小题,21题5分,22题4分,共9分)
21.解:设招聘室内员工x人,则招聘室外员工(150?x)人. ································· 1分
依题意,得150?x?2x. ··············································································· 2分 解之得x?50. ····························································································· 3分 因为室内、室外两种员工每月的保底工资分别为600元和1000元,
?x?50时,此家政公司每月付的保底工资最少,
所以,此家政公司每月付的保底工资为600?50?1000(150?50)?130000. ············ 4分
答:此家政公司每月付的保底工资最少为130000元. ············································ 5分 22.解:(1)
1;252. ················································································· 2分
(2)答案不唯一,两个图形面积均为12给1分,关于点O对称给1分. ·················· 4分
七、解答题(本题满分7分)
23.解:(1)3.5.··························································································· 2分 (2)由题意,得2x?1?(0.5?x)?0. ···························································· 4分
2整理,得4x?2x?1?0,
2?1?54解之,得. ········································································ 5分
x0.5?x?1?5?1?5?0x?x?2x44时,1∴当或.
(3)x?8,y?2.????????????????????????????7分
x?八、解答题(本题满分7分)
24.解:(1)在图1中,∵直线AC交x轴于点C,
0). ·∴点C?2,0?,即D(2,············································································ 1分
y过点B作BE?x轴于点E.
∵?OBD是等腰直角三角形,直角顶点为B,
?OB?BD,?BDE?45?,
AB1?OE?ED?BE?OC?1,2
E 图1 C(D)oyx∴B(1,1). ··································································································· 2分 (2)∵直线AC交y轴于点A,
23)3. ∴
在图2中,过点O作OF?AC于点F. A(0,在Rt△AOC中,
AFB'tan?ACO?AO3?OC3,
??ACO?30?, 图2 ??FOC?60?,OF?1.
在Rt△B?OD中,利用勾股定理,得OB??2, 在Rt△OB?F中,
oCDxcos?B?OF?OF2?OB?2,
??B?OF?45?.
??B?OD?45?, ??DOF?90?,
??COD???30?. ···················································································· 4分
(3)?抛物线y?mx?3x过点B(1,1),
2?m??2,
2?抛物线的解析式为y??2x?3x. ································································· 5分
B?a,b?,则a2?b2?(2)2?2. 设点?
?又点B?a,b?在直线AC上,
?b??323a?33, 3232a?)?233,
?a2?(??a?1?32(负值不符合题意,舍),
3?12. ······························································································ 6分 1?322代入抛物线的解析式y??2x?3x中,
?b?a?将
1?321?3??2?()?3?223?1?2 ?b.
2y??2x?3x上. ·?BB∴点在过点的抛物线····················································· 7分
九、解答题(本题满分8分)
25.解:(1)BE?AD. ????????????????????????1分
证明:如图2,∵△ABC与△DCE都是等边三角形,△C?D?E?绕点C顺时针旋转30°得到△CDE, ∴△CDE也是等边三角形,且?2?30?,
∴?ACB??DCE?60?, CA?CB,CE?CD. ?????????????2分
A∴?1?30?, ∴?3?30?, ∴?2??3.
∴△BCE≌△ACD,
∴ BE?AD. ??????????????3分
DE213CB(C')∵△CDE在线段CF上沿着CF方向以每秒1个单位的速度平移x秒, 图2 (2)如图3,设PR、RQ分别与AC交于点O、L. 平移后的△CDE为△PQR,
?CQ?x.
由(1)可知?PQR??PRQ??BCA?60?,?BCF?30?,
??ACF?30?,
??CLQ??RLO?30?. ?LQ?CQ?x,?ROL?90?.
?QR?3,
?RL?3?x.
在Rt△ROL中,
OR?113RL?(3?x)OL?RL?cos30??(3?x)222,.
13RO?OL?(3?x)228.??????????????????????4分
过点R作RK?PQ于点K. ?S?ROL?A在Rt△RKQ中,
RK?RQ?sin60??332,
FPB?S?RPQ193?PQ?RK?24.
OKQRLC 图3
323393x?x?848. ??????????????5分
??BCF?30?,?B?60?, ?y?S?RPQ?S?ROL????BFC?90?.
当点P与点F重合时,FQ?PQ?3,
sin60??6, ∵CF?BC?∴CQ?3.
∴此函数自变量x的取值范围是0?x?3. ????????????????6分 (3)C?N?E?M的值不变 . ????????????????????7分 证明:如图4,由题意知,????5??4?180?,
?∴???120??4,
?在?CME?中,?6?120??4,
ABD'NME'645?∴????6.
又∵?C???E??60?, ∴△E?MC∽△C?CN,
E?ME?C?C?N. ∴C?C∵点C是C?E?的中点,C?E??3,
3E?C?CC??2, ∴
CC' 图43E?M?23C?N∴2,
9C?N?E?M?4. ????????????????????????8分 ∴
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库0809学年昌平区初三年级二模试题数学_2在线全文阅读。
相关推荐: