练习 6.1
1. 若F?(x)=f(x),则F(x)是f(x)的原函数,f(x)的原函数全体称为f(x)的不定积分。
区别是:f(x)的不定积分描述了所有满足导数是f(x)的函数,而原函数只是任一个满足导数是f(x)的函数。
2. (1)e?x (2)cosx?c (3) (4)2 (5)-1 (6)?a?123112 (7)
3.(1)(10x?c)??10 ?10dx?10x?c
(2)(?2cosx?c)??sinx ?2sinxdx??2cosx?c (3)d(x5?c)?5x4dx ?5x4dx?x5?c 4.解:由题意5.解:由题意
练习 6.2 1.(1) (3)
x22f(x)?2x?c,又由 f(1)?1,知 c??1,因此 f(x)?2x?1。
1xf(x)?(lnx)??,所以 f?(x)??1x2
?lnx?1xe?11x?c (2)arcsinx?3cosx?xe32x?c
43e?1?e?ex?c
1ln44?8158 (4)=?(4x?26x?9x)dx =
12141878x2ln66?x1ln99x?c
(5)=?(xxx)dx??xdx? (6)=?xdx?214?15x?c
45x?c54
?x3 (7)=?(x?1? (8)=?2x1x?1)dx23?x?arctanx?c
12dx?2x2?x12(x?1)2dx??xx22dx?2?x1dx?2?x?1dx??1x?arctanx?c
(9)?cos2dx??1?cosx2dx??sinx2?c
(10)=?(1sin2x?1cos2x)dx?tanx?cotx?c
(11)=?(csc2x?1)dx??cotx?x?c (12)=?1?cos2cos22xxdx?12tanx?x2?c
2. 解:由题意知 c(x)=7x+50x?c 由固定成本为 1000 知 c=1000 因此 c(x)=7x+50x?1000 练习6.3
(1)(5x-3)dx??2815?(5x?3)d5x?18145(5x?3)?c124339(2)?x2x?1dx??163?42x?1d2x?22(2x?1)2?c2(2x?1)2?c1?lnxx?x2(3)?dx??x?21?lnxdlnx??x233(1?lnx)2?c(4)?edx??de(5)?cscxdx?(6)(7)?(8)?(9)?x2??e?cdx??cscx?cscxcotxcscx?cotxx?1?1x?11122?dln(cscx?cotx)cscx?cotx1x?1?ln|cscx?cotx|?cx?112dx??dx?dx?2?(x?1)dx??122dx?x?x?ln|1?x|?cx?1?c22x?12?2x?1dx?1ln(x?1)?c?ln1x?1dx??1221x?2x?112dx??(x?1)dx??21?c14(10)?(11)?x?2x?31x?2x?52dx?dx??(x?3)(x?1)?(x?1)12?x?31dx?14?x?11dx??14ln(x?3)?14ln(x?1)?c?2dx?2arctan1ax?12?c(12)?f(ax?b)dx?2.(1)?11?x?2x1?3341a?(ax?b)d(ax?b)?F(ax?b)?cdxx?2?t?2t??????????dt?????????????1?t?2dt??1?tdt?2t?2ln(1?t)?c?23?2x?2?ln(x?2)?c3424(2)?dx?141?x?1?131?xt?144??????d(1?x)????1?x?t4143t2?1?tdt?34(t?t?ln|1?t|)?c?2(1?x)3?34(3)?x?1?1x?1?1??????dx??x?1?t?t?12tdt12?2?(t?2)(t?1)?2t?1dt?2?(t?2)dt?4?1t?1dt?t?4t?4ln|1?2?x?4x?1?4ln(1?x?1)?c(4)?1(1?x)23dx令x?sinx dx?costdt原式? =1(5)?x2?cosx12tdt??c?sec2tdt?tant?c1-x23?x2dx 令x=3tant dx=3secdt3sectdt222原式??3tanxdx?t3?3tant22dt??3tansect2t??3sincost2tdt??13sint2?c =-11?9x23+x?c13192(6).??dx?213lnx?x?219?c?x(7)令x?asint dx=acostdt ?x222a?x dx=?asint?acostdtacost2 =-acost+c2 =-a(8).?11?4x?x21-xa22
22 +c=-aa?x?c1dx?lnx?2?2dx??(x?2)?3?c2(x?2)?(3)2
练习6.4
1. (1)
??xlnxdx?122212?lnxdx12?12122xlnx?x221?x2?c2dlnx
xlnx??2xdx?xlnx?4?xsinxdx???xdcosx??xcosx?2?xcosxdx22 (2) ??x2cosx?2?xdsinx??x2cosx?2xsinx?2?sinxdx
??xcosx?2xsinx?2cosx?cxcosxsinx232 (3)
?xdx?212?xdcscx??2x2cscx?212?cscdx2??cscx?12
cotx?c (4)
?(1?x??123x22)dx?21?121?(1?x1x2)d(1?x)??2x2?2x2212?xd11?x2
x1?x2?21?xdx??2?arctanx?c (5)
?secxdx?因此
?secxd?sectanx?secxtanx?2?tanxdsecx?secxtanx?xtanxdx?secxtanx??sec3
xdx??secxdx ?sec3xdx?(6)
secxtanx?lnsecx?tanx2设x?atant?c
?2x222dxa?x3??atan22tasect2asec2
?a?(sect?sect)dt?aa?x22secttant?ln(set?tant)22?c
?a2xaa?ln2a?xa2?xa?c?xa?x222
lnx??a?x222?c(7)
?arcsinxdx?xarcsinx??xarcsinx?1?xx?x1?x2dx
2?c?excosxdx?ecosx??exxdcosx(8)?excosx??exsinxdx?excosx??sinxdex
?ecosx?esinx?xx?ecosxdx 因此 ?ecosxdx?
设t?xxe(coxs?sinx)2x?c
?cosxdx??costdt2?2?tcostdt (9) ?2?tdsint?2tsint?2?sintdt?2tsint?2cost?c?2xsinx?2cosx?c
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库微积分二第六章课后习题答案在线全文阅读。
相关推荐: