第四章作业解答
1.用积分公式直接求下列不定积分:
(1)?9x4?4xx?1x3dx
9x4?4xx?133解:?x3dx??(9x?4x?2?x?3)dx?9?xdx?4?x?2dx??x?3dx 91?2?2?x9812x?8x2?2?C?2x2?x?2x2?C (3)?3x4?3x2?1x2?1dx 解: ?3x4?3x2?1x2?1dx??3x2(x2?1)?1x2?1dx??3x2dx??1x2?1dx ?x3?arctanx?C
(5)?(3e)5xdx
[(3e)5]x解:?(3e)5xdx??[(3e)5]xdx?(3e)5xln(3e)5?C?5ln3?5?C (7)?sin2x2dx
解: ?sin2x1?cosx2dx??2dx?12?dx?12?cosxdx?12x?12sinx?C 2.用积分公式直接求下列不定积分:
(1)?(x?1)2xdx
解:?(x?1)231xdx??x2?2x?1xdx??(x2?2x2?x?12)dx 531?2x2?4x2?2x253?C (2)?xxxdx 1715解:?xxxdx??2?1x4?18dx??x8dx?8815x?C
1
(3)?cos2xdx
sin2xcos2xcos2x11cos2x?sin2xdx?(??dx解:?2?sin2xcos2x)dx ?sin2xcos2xsinxcos2x??(csc2x?sec2x)dx??cotx?tanx?C
1?cos2xdx (4)?1?cos2x111111?cos2x1?cos2x?dx?dx?tanx?x?C dx??dx解:?2??22cosx2221?cos2x2cosxex(x?e?x)dx (5)?x1ex(x?e?x)dx??exdx??dx?ex?lnx?C 解:?xx3.用第一类换元法求下列不定积分: (1)?e?xdx
解:?e?xdx???e?xd(?x)??e?x?C (2)?42x?1dx 解:?41(2x?1)12?C?(2x?1)4?C 2x?1dx??(2x?1)d(2x?1)?5225414545(3)?解:?dx
(1?2x)311dx11?3?2??(1?2x)d(1?2x)?(1?2x)?C ??d(1?2x)?33?242(1?2x)(1?2x)(4)?axexdx
(ae)xaxex?C??C 解:?aedx??(ae)dx?lnaelna?1xxx(5)?dx
4?9x2 2
解:?dx1dx4?9x2?4??1?21?(3x243?13x13x3xd()?arctan?C 22)1?(2)262(6)?dxcos2(2x??
4)解:?dx?1cos2(2x??4)2?1d(2x??1?cos2(2x??4)?2tan(2x?4)?C
4)(7)?sec2xtanxdx 解:?sec2x1tanxdx??tanxdtanx?lntanx?C (8)?xdx1?2x2
解:?xdx1?2x2?14?11?2x2d(1?2x2)?112(1?2x2)2?C
4.用第一类换元法求下列不定积分: (1)?x22?x3dx
2解:?xdx112?x3??3?2?x3d(2?x3)??13?(2?x3)?12d(2?x3) ??2123(2?x3)2?C??2?x33?C (2)?dxex?e?x 解:?dxexdxex?e?x??e2x?1??1e2x?1dex?arctanex?C (3)?dxx2?2x?5 解:?dxdxx2?2x?5??dxdx1x2?2x?1?4??(x?1)2?4?4?1?(x?1 22)?11x?x?14?2?d(1)?1arctan?C 1?(x?122222)
3
(4)?1x?x2dx
解:?111x?x2dx??x1?xdx?2?dx?2arcsinx?C
1?(x)2arctan1(5)?x1?x2dx arctan1解:?x1?x2dx???arctan1xdarctan1x??12(arctan1x)2?C (10)?tan3xdx
解:?tan3xdx=?tanx(sec2x?1)dx??tanxsec2xdx??tanxdx
??tanxdtanx??tanxdx?12tan2x?lncosx?C (11)?sin3xdx
解:?sin3xdx??sinxsin2xdx???(1?cos2x)dcosx
???dcosx??cos2xdcosx??cosx?13cos3x?C
5.用第二类换元法求下列不定积分:
(1)?x3?xdx
解:设t?3?x,则x?t2?3,dx?2tdt 所以?x3?xdx??(t2?3)?t?2tdt??(t2?3)?t?2tdt
53?2?(t4?3t2)dt=?225t5?2t3?C?5(3?x)2?2(3?x)2?C
(3)?dxx?3x
解:设t?6x,则x?t6,dx?6t5dt
dx3?6t5dttt3?1?1(t?1)(t2x?3x??t3?t2?6?t?1dt?6?t?1dt?6?(?t?1)t?1?1t?1)dt?6?(t2?t?1)dt?6?1t?1dt?2t3?3t2?6t?6lnt?1?C 4
?2x?33x?66x?6ln6x?1?C
(5)?dx1?e2x
t1解:设t?1?e2x,则x?2ln(t2?1),dx?t2?1dt t所以?dx??t2?1tdt??11111?e2xt2?1dt?2?(t?1?t?1)dt ?111?e2x?11e2x2(lnt?1?lnt?1)?C?2ln1?e2x?1?C?2ln(1?e2x?1)2?C ?1lne2x?1ln(1?e2x?1)2??C?x?ln(1?e2x22?1)?C (8)?x34?x2dx
解:设x?2sint,则dx?2costdt
所以?x34?x2dx??8sin3t?4?4sin2t?2costdt
?32?sin3t?cos2tdt??32?(cos2t?cos4t)dcost??32(cos3tcos5t3?5)?C35??323(4?x22)3?325(4?x22)5?C??413(4?x)2?5(4?x)2?C
(10)?dxx2(1?x2)3
解:设x?sint,则dx?costdt 所以?dxcostdtx(1?x2)3??sin2t(1?sin2t)3??costdtsin2tcos3t??sin2t?cos2t2sin2tcos2tdt??(sec2t?csc2t)dt?tant?cost?C?x1?x21?x2?x?C 2(12)?xdx(1?x2)3
解:设x?tant,则dx?sec2tdt
5
所以?x2dx(1?x)23??tan2tsec2tdttan2tsec2tdt?? 323sect(1?tant)??(sect?cost)dt?lnsect?tant?sint?C?ln1?x2?x?x?C
1?x26.用分部积分法求下列不定积分: (1)?(ex?lnx)dx
解:?(ex?lnx)dx??exdx??lnxdx?ex?xlnx??xdlnx
?ex?xlnx??dx?ex?xlnx?x?C
(2) ?x2e?2xdx 解:?x2e?2xdx??12?x2de?2x??12x2e?2x?12?e?2xdx2 ??1x2e?2x2??xe?2xdx??1x2e?2x?12?xde?2x2
??1x2e?2x2?1xe?2x?1?e?2xdx??1x2e?2x?1xe?2x12222?4?e?2xd(?2x) ??1x2e?2x2x2?12xe?2x?14e??C??112e?2x(x2?x?2)?C (3)?(2x?3x2)arctanxdx 解:?(2x?3x2)arctanxdx
??arctanxd(x2?x3)?(x2?x3)arctanx??(x2?x3)darctanx
?(x2?x3)arctanx??x2?x31?x2dx?(x2?x3)arctanx??x(x2?1)?x2?1?x?11?x2dx ?(x2?x3)arctanx??xdx??dx??x1?x2dx??11?x2dx?(x2?x3)arctanx?x212?x?2?121?x2d(1?x)?arctanx ?(x2?x3?1)arctanx?x22?x?12ln(1?x2)?C
6
(4) ?(lnx2x)dx 解:?(lnx2x??(lnx)2)dxx2dx???(lnx)2d1x??121x(lnx)??xd(lnx)2 ??1x(lnx)2??1x2lnx?111xdx??x(lnx)2?2?lnx?dx
??1x(lnx)2?211111xlnx?2?x?dlnx??x(lnx)2?2xlnx?2?x2?dx
??1(lnx)2?21lnx?21?C??1[(lnx)2xxxx?2lnx?2]?C
(5) ?sinxex
解:?sinxex??e?xsinxdx???e?xdcosx??e?xcosx??cosxde?x
??e?xcosx??e?xcosxdx??e?xcosx??e?xdsinx
??e?xcosx?e?xsinx??sinxde?x??e?xcosx?e?xsinx??e?xsinxdx所以?sinxex??e?xsinxdx??12e?x(cosx?sinx)?C (6) ?xsec2xdx
解:?xsec2xdx??xdtanx?xtanx??tanxdx
?xtanx??sinxcosxdx?xtanx??1cosxdcosx ?xtanx?lncosx?C (7) ?xtan2xdx
解: ?xtan2xdx??x(sec2x?1)dx??xsec2xdx??xdx??xdtanx?12x2 ?xtanx??tanxdx?12x2?xtanx?lncosx?12x2?C (8) ?ln(1?x2)dx
解:?ln(1?x2)dx?xln(1?x2)??xdln(1?x2)
2x22(1?x2?xln(1?x2)??1?x2dx?xln(1?x2)??)?21?x2dx ?xln(1?x2)??(2?21?x2)dx?xln(1?x2)?2x?2arctanx?C
7
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库陈文灯主编《微积分》第四章作业解答在线全文阅读。
相关推荐: