(1)整数比化简:比的前项和后项同时除以比前项和后项的最大公因数,所得的比为最简整数比。
(2)小数比化简:先看比前项和后项最多的项有几位小数,一位小数扩大10倍,两位小数扩大100倍??;再按整数比化简的方法化简。
(3)分数比化简:比前项和后项的分数的同时乘以比前项和后项的分数的分母的最小公倍数;再按整数比化简的方法化简。 8、运用比的知识解决实际问题:
按比例分配:分配总分数等于比例前项和后项的和(如按3:2分,即总共分5份,前项占3份,后项占2份;也可以说前项占总数的3/5,后项占总数的2/5。)则可以用总数乘以前项所占的分数,求出前项对应的值;用总数乘以后项所占的分数,求出后项对应的值。
求大树高度:同一地点,同一时间物体高度与影长的比例相同。 竹竿长:竹竿影长=大树高:大树影长 或竹竿长/竹竿影长=大树高/大树影长
第六单元 分数四则运算
分数四则运算和整数一样:先算乘除,后算加减,有括号的先算括号里的。 一、定律
(1)加法交换律:交换两个加数的位置,和不变:a+b=b+a
(2)加法结合律:三个数相加,先用前两个数相加,再加上第三个数,或者先用后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
(3)乘法交换律:交换两个乘数的位置,积不变。a×b=b×a
(4)乘法结合律:三个数相乘,先用前两个数相乘,再乘以第三个数,或者先用后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c) (5)乘法分配律:ac+bc=(a+b)c ac-bc=(a-b)c 二、 简便运算: (一) 加法
三个数相加,先找出加数中分母相同的加数;运用加法交换律或结合律把这两个加数移到一起,在这个算式中先算这两个数的和,再用这两个的和加上另一个数。 (二) 减法
减法的性质:一个数连续减去几个数,等于减去这几个数的和。
即:a-b-c=a-(b+c)或a-b+c=a-(b-c);a-(b+c)=a-b-c或a-(b-c)=a-b+c
1、在分数四则混合运算中,如果只有加减法,并且在括号里面和外面有分母相同的分数,
则利用减法的性质进行去括号计算。即:a-(b+c)=a-b-c a-(b-c)=a-b+c
2、在分数四则混合运算中,如果只有加减法,被减数外的两个分数是分母相同的分数,则利用减法的性质进行加括号计算即:a-b-c=a-(b+c)或a-b+c=a-(b-c) (四)乘、除法
1、在四则混合运算中,先观察题中是否有相同的分数。如果有且相同的分数分布在加减号的两侧,则可以根据乘法分配律来简便计算。即:ac+bc=(a+b)c ac-bc=(a-b)c 2、分数除法:除以一个数等于乘以这个数的倒数。
3、除法的性质:一个数连续除以几个数,等于除以这几个数的积。
即:a÷b÷c=a÷(b×c)或a÷b×c=a÷(b÷c);a÷(b×c)=a÷b÷c或a÷(b÷c)=a÷b×c 五、解决实际问题
已知A和B是A的几分之几,求B? A×几分之几=B
已知A和B比A多几分之几,求B? A+A×几分之几=B
已知A和B比A少几分之几,求B?
A×几分之几=B
探索与实践结论:把一个长方形的长和宽分别增加1/2,即长和宽变为原来的3/2,现在的面积变为原来的9/4,即为:现在面积:原来面积的=现在长2:原来长2=现在宽2:原来宽2 注:在计算的过程中,根据实际情况确定使用的简便方法。
第七单元:解决问题的策略
一、 替换的策略
1、根据题目意思,写出等量关系。 2、把相等的量互换。 3、根据题意列方程解答。
二、假设的策略(鸡兔同笼问题及延伸题) 例:(大船坐的人数×总船数-总人数)÷(大船坐的人数-小船坐的人数)=小船数 (总人数-小船坐的人数×总船数)÷(大船坐的人数-小船坐的人数)=大船数 假设全部为其中的一种,用假设的这种×总头数和总脚数作比较谁大谁作被减数,再除以两种脚之差,所求出的为另一种的只数。
(1)已知总头数和总脚数,求鸡、兔各多少:
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。
(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数
或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(例略)
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。(例略)
(4)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式: 〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数; 〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
(5)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式: (1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。 (“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元??。它的解法显然可套用上述公式。)
第八单元:可能性
求摸到某种球的可能是几分之几?
这种球的个数÷总个数=这种球的个数/总个数
第九单元、认识百分数
1、百分数:表示一个数是另一个数的百分之几的数叫百分数,又叫百分比或百分率。 通常在原来的分子后面加“%”来表示:如30/100可以写成30% 注:在用%号表示百分数中,后面带单位的百分之几不能用%表示。 2、百分数与小数的互化 (1)、小数化为百分数:一位小数写成十分之几,分子分母同时扩大10倍;两位小数写成百分之几;三位小数写成千分之几,分子分母同时缩小10倍……。 (或把小数的小数点向右移动两位,后面加上百分号)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库苏教版六年级上册数学知识点总结(2)在线全文阅读。
相关推荐: