大连海事大学
实 验 报 告
实验名称: 计量经济学软件应用
专业班级: 2012 级工商管理(1)班
姓 名: 宋 杨
指导教师: 赵冰茹
交通运输管理学院
二○一四 年 十二 月
大连海事大学实验报告 学号:2220123514
一、 实验目标
学会常用经济计量软件的基本功能,并将其应用在一元线性回归模型的分析中。具体包括:Eview6.0的安装,样本数据基本统计量计算,一元线性回归模型的建立、检验及结果输出与分析,多元回归模型的建立与分析,序列相关模型的检验与处理等。
二、实验环境
WINDOWSXP或2007操作系统下,基于EVIEWS6.0平台。
三、实验模型建立与分析
案例1:一元线性回归模型的建立与分析
已知某市货物运输量Y(万吨),国内生产总值GDP(亿元,1980年不变价)。(数据来源:《计量经济学基础》第3版 张晓峒 南开大学出版社 42页习题6) 表一:1985年~1998年的样本观测值见下表
年份 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
Y 18249 18525 18400 16693 15543 15929 18308 17522 21640 23783 24040 24133 25090 24505
- 1 -
GDP 161.69 171.07 184.07 194.75 197.86 208.55 221.06 246.92 276.8 316.38 363.52 415.51 465.78 509.1
大连海事大学实验报告 学号:2220123514
1. 散点图分析
建立货物运输量Y随国内生产总值GDP的一元线性回归模型
26,00024,00022,00020,000Y18,00016,00014,000100200300GDP400500600 图1-1
从图中可以看出Y与GDP之间可能存在线性相关关系。但是我们无法得出Y与GDP之间精确的计量关系,因此用普通最小二乘法进行一元线性回归模型的估计。
2.普通最小二乘法建立一元线性回归模型。
将Y作为被解释变量,GDP作为解释变量利用eviews6.0的Equation进行模型估计,输出结果报告如下:
Dependent Variable: Y Method: Least Squares Date: 12/20/14 Time: 16:49 Sample: 1985 1998 Included observations: 14
GDP C
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
Coefficient 26.95415 12596.27
Std. Error 4.120300 1244.567
t-Statistic 6.541792 10.12101
Prob. 0.0000 0.0000 20168.57 3512.487 17.85895 17.95024 17.85050 0.859998
0.781002 Mean dependent var 0.762752 S.D. dependent var 1710.865 Akaike info criterion 35124719 Schwarz criterion -123.0126 Hannan-Quinn criter. 42.79505 Durbin-Watson stat 0.000028
图1-2
- 2 -
大连海事大学实验报告 学号:2220123514
由上表可知货物运输量随国内生产总值变化的一元线性回归方程为: Y = 12596.27++ 26.9542* GDP
其中斜率26.95415表示国内生产总值每增加一元,货物运输量平均增长26.9542万辆。
3.对所建立建立的回归方程进行检验(t(12)=2.18) ⑴ 经济学意义上的检验
从回归方程来看,国内生产总值每增加一元,货物运输量平均增长26.9542万辆。系数为正,符合经济发展规律,是具有经济意义的模型。 ⑵统计学意义上的检验
? 可决系数R-squared=0.762752,说明被解释变量的变异中有76%以上
可由方程解释,模型总体拟合程度还不错。
? F统计量=42.79505,其伴随概率0.000028<0.05,在5%的显著性水平
下,拒绝原假设,接受备择假设,即方程总体是显著的。
? 所有系数的t统计量伴随概率均小于0.05,在5%的显著性水平下,拒
绝原假设。说明系数显著,GDP对货物运输量有显著影响。
4.对模型的估计与预测
假如2000年某市以1980年为不变价的国内生产总值为620亿元,求2000年货物运输量预测值及预测区间。
国内生产总值为620亿元,货物运输量的预测值 =12596.27++ 26.9542* 620 =29307.84 万吨 经计算
va?r(Y?0)?S(21n?(X0?X)2?xt2?1(620?280.9329)2???276.1905 )=1710.8658*??14??1277340?? 故货物运输量的预测区间为: (28873.08746万辆,29742.59254万辆) 5.案例总结
从本案例中,我们知道交通运输业的发展与经济情况密切相关,影响着国内生产总值GDP的发展。在进行分析时,应注意从经济意义,统计学意义上进行分析,争取做到结果更准确。
- 3 -
大连海事大学实验报告 学号:2220123514
案例2:多元线性回归模型的建立与分析
为了研究税收收入的影响因素,表二给出了我国2000~2012年国家税收收入y(亿元),国内生产总值x1(亿元),财政支出x2(亿元),商品零售价格指数x3(%),货物运输总量x4(万吨),对它们之间的关系进行回归分析。 (数据来源:国家统计局官网,统计年鉴) 表二:
年份
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
税收收入
y
12581.51 15301.38 17636.45 20017.31 24165.68 28778.54 34804.35 45621.97 54223.79 59521.59 73210.79 89738.39 100614.28
国内生产总值
x1
98000.5 108068.2 119095.7 134977.0 159453.6 183617.4 215904.4 266422.0 316030.3 340320.0 399759.5 468562.4 516282.1
财政支出x2
15886.50 18902.58 22053.15 24649.95 28486.89 33930.28 40422.73 49781.35 62592.66 76299.93 89874.16 109247.79 125952.97
商品零售价格指数
x3
100.4 100.7 99.2 101.2 103.9 101.8 101.5 104.8 105.9 99.3 103.3 105.4 102.6
货物运输总量
x4
1358682 1401786 1483447 1564492 1706412 1862066 2037060 2275822 2585937 2825222 3241807 3696961 4099400
1. 建立y与x1、x2、x3、x4的散点图如下:
5,000,0004,000,000X1X2X3X43,000,0002,000,0001,000,0000020,00040,00060,00080,000100,000Y图2-1
- 4 -
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库计量经济学实验报告在线全文阅读。
相关推荐: