77范文网 - 专业文章范例文档资料分享平台

概率论(老师布置的所有题目仅供参考)广西科技大学版

来源:网络收集 时间:2020-04-15 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

广西科技大学概率论老师布置的所有题目

2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:? (1) A发生,B,C都不发生; (2) A与B发生,C不发生;? (3) A,B,C都发生;

(4) A,B,C至少有一个发生;? (5) A,B,C都不发生; (6) A,B,C不都发生;?

(7) A,B,C至多有2个发生; (8) A,B,C至少有2个发生.?

【解】(1) ABC (2) ABC (3) ABC

(4) A∪B∪C=ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC (5) ABC=A?B?C (6) ABC

(7) ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC=A∪B∪C (8) AB∪BC∪CA=ABC∪ABC∪ABC∪ABC

4.设A,B为随机事件,且P(A)=0.7,P(A?B)=0.3,求P(AB).? 【解】 P(AB)=1?P(AB)=1?[P(A)?P(A?B)]

=1?[0.7?0.3]=0.6

6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,

?P(AC)=1/12,求A,B,C至少有一事件发生的概率.?

【解】 P(A∪B∪C)=P(A)+P(B)+P(C)?P(AB)?P(BC)?P(AC)+P(ABC)

=

11113++?= 4431247.?从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率

是多少?

5332【解】 p=C13C13C13C13/C1352

10.一批产品共N件,其中M件正品.从中随机地取出n件(n

1

(2) n件是无放回逐件取出的;? (3) n件是有放回逐件取出的.?

n?mn【解】(1) P(A)=CmC/CMN?MN

n(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有PN种,n次抽取中有m

次为正品的组合数为Cmn种.对于固定的一种正品与次品的抽取次序,从M件正

mn?m品中取m件的排列数有PM种,从N?M件次品中取n?m件的排列数为PN?M种,

mn?mCmnPMPN?MP(A)= nPN由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成

n?mCmMCN?MP(A)= nCN可以看出,用第二种方法简便得多.

(3) 由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为Nn种,n

次抽取中有m次为正品的组合数为Cm对于固定的一种正、次品的抽取次序,n种,m次取得正品,都有M种取法,共有Mm种取法,n?m次取得次品,每次都有N?M种取法,共有(N?M)n?m种取法,故

mn?mP(A)?Cm/Nn nM(N?M)此题也可用贝努里概型,共做了n重贝努里试验,每次取得正品的概率为m件正品的概率为

M,则取得N?M??M?P(A)?Cmn???1??NN????mn?m

13.?一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,

计算至少有两个是白球的概率.

【解】 设Ai={恰有i个白球}(i=2,3),显然A2与A3互斥.

1C2184C3P(A2)?3?,C735C344P(A3)?3?

C73522 35故 P(A2?A3)?P(A2)?P(A3)?

15.?掷一枚均匀硬币直到出现3次正面才停止.

(1) 问正好在第6次停止的概率;

(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.

2

11131C4()()5212131224?2 ?【解】(1) p1?C5()() (2) p2?222325/32520.?已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是

男人的概率(假设男人和女人各占人数的一半).

【解】 设A={此人是男人},B={此人是色盲},则由贝叶斯公式

P(AB)? ?P(A)P(BA)P(AB) ?P(B)P(A)P(BA)?P(A)P(BA)0.5?0.0520?

0.5?0.05?0.5?0.00252125. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学

生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A={被调查学生是努力学习的},则A={被调查学生是不努力学习的}.由题意知P

(A)=0.8,P(A)=0.2,又设B={被调查学生考试及格}.由题意知P(B|A)=0.9,P(B|A)=0.9,故由贝叶斯公式知

P(A)P(BA)P(AB)(1)P(AB)? ?P(B)P(A)P(BA)?P(A)P(BA) ?0.2?0.11??0.02702

0.8?0.9?0.2?0.137即考试及格的学生中不努力学习的学生仅占2.702% (2) P(AB)?P(A)P(BA)P(AB) ?P(B)P(A)P(BA)?P(A)P(BA)0.8?0.14??0.3077

0.8?0.1?0.2?0.913 ?即考试不及格的学生中努力学习的学生占30.77%.

28.?某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率

为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.

【解】 设A={产品确为合格品},B={产品被认为是合格品}

由贝叶斯公式得

P(A)P(BA)P(AB) P(AB)??P(B)P(A)P(BA)?P(A)P(BA) ?

3

0.96?0.98?0.998

0.96?0.98?0.04?0.05

30.?加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为

0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设Ai={第i道工序出次品}(i=1,2,3,4).

P(?Ai)?1?P(A1A2A3A4)

i?14 ?1?P(A1)P(A2)P(A3)P(A4) ?1?0.98?0.97?0.95?0.97?0.124 33.?三人独立地破译一个密码,他们能破译的概率分别为的概率.

【解】 设Ai={第i人能破译}(i=1,2,3),则

111,,,求将此密码破译出534P(?Ai)?1?P(A1A2A3)?1?P(A1)P(A2)P(A3)

i?13 ?1?423???0.6 53434.?甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人

击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A={飞机被击落},Bi={恰有i人击中飞机},i=0,1,2,3

由全概率公式,得

P(A)??P(A|Bi)P(Bi)

i?03=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+

(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458

41.对任意的随机事件A,B,C,试证?

P(AB)+P(AC)?P(BC)≤P(A).? 【证】 P(A)?P[A(B?C)]?P(AB?AC) ?P(AB)?P(AC)?P(ABC) ?P(AB)?P(AC)?P(BC)

42.?将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设Ai={杯中球的最大个数为i},i=1,2,3.

将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故

C33!3P(A1)?43?

48而杯中球的最大个数为3,即三个球全放入一个杯中,故

4

C114P(A3)?3?

416因此 P(A2)?1?P(A1)?P(A3)?1?319?? 8161621C194C3C3?或 P(A2)? 3416

习题二

1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只

球中的最大号码,写出随机变量X的分布律. 【解】

X?3,4,5P(X?3)?P(X?4)?1?0.13C53 ?0.3C35C24P(X?5)?3?0.6C5故所求分布律为 X P

3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】

设X表示击中目标的次数.则X=0,1,2,3.

3 0.1 4 0.3 5 0.6 P(X?0)?(0.2)3?0.0082P(X?1)?C130.8(0.2)?0.096P(X?2)?C(0.8)0.2?0.384P(X?3)?(0.8)3?0.512故X的分布律为 X P 分布函数

0 0.008 1 0.096 2 0.384 232

3 0.512 5

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库概率论(老师布置的所有题目仅供参考)广西科技大学版在线全文阅读。

概率论(老师布置的所有题目仅供参考)广西科技大学版.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/965947.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: