77范文网 - 专业文章范例文档资料分享平台

高中数学竞赛特级教师培训教材

来源:网络收集 时间:2020-11-14 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

高中数学竞赛培训教材

(一)集合与容斥原理

集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。

一、学习集合要抓住元素这个关键

例1.设A={X∣X=a2+b2,a、b∈Z},X1,X2∈A,求证:X1X2∈A。

分析:A中的元素是自然数,即由两个整数a、b的平方和构成的自然数,亦即从0、1、4、9、16、25??,n2,??中任取两个(相同或不相同)数加起来得到的一个和数,本题要证明的是:两个这样的数的乘积一定还可以拆成两个自然数的平方和的形式,即(a2+b2)(c2+d2)=(M)2+(N)2,M,N∈Z

证明:设X1=a2+b2,X2=c2+d2,a、b、c、d∈Z.则X1X2=(a2+b2)(c2+d2)

=a2c2+b2d2+b2c2+a2d2=a2c2+2ac2bd+b2d2+b2c2-2bc2ad+a2d2=(ac+bd)2+(bc-ad)2 又a、b、c、d∈Z,故ac+bd、bc-ad∈Z,从而X1X2∈A 练习:

1.设两个集合S={x|x=12m+8n,m,n∈Z},T={x|x=20p+16q,p,q∈Z}.求证:S=T。 2.设M={a|a= x2-y2,x,y∈Z}.求证:(1)一切奇数属于M; (2)4k-2(k∈Z)不属于M;

(3)M中任意两个数的积仍属于M。

3.已知函数f(x)=x2+ax+b,a,b∈R,且A={x|x=f(x)},B={x|x=f[f(x)]}.

第1页(共49页)

(1)求证:AB;

(2)若A={-1,3}时,求集合B. 二、集合中待定元素的确定

例2.已知集合M={X,XY,lg(xy)},S={0,∣X∣,Y},且M=S,则(X+1/Y)+(X2+1/Y2)+??+(X2002+1/Y2002)的值等于( ).

分析:解题的关键在于求出X和Y的值,而X和Y分别是集合M与S中的元素。这一类根据集合的关系反过来确定集合元素的问题,要求我们要对集合元素的基本性质即确定性、异性、无序性及集合之间的基本关系(子、全、补、交、异、空、等)有本质的理解,对于两个相等的有限集合(数集),还会用到它们的简单性质:(a)相等两集合的元素个数相等;(b)相等两集合的元素之和相等;(c)相等两集合的元素之积相等.

解:由M=S知,两集合元素完全相同。这样,M中必有一个元素为0,又由对数的性质知,0和负数没有对数,所以XY≠0,故X,Y均不为零,所以只能有lg(XY)=0,从而XY=1.∴M={X,1,0},S={0,∣X∣,1/X}.再由两集合相等知

当X=1时,M={1,1,0},S={0,1,1},这与同一个集合中元素的互异性矛盾,故X=1不满足题目要求;

当X=-1时,M={-1,1,0},S={0,1,-1},M=S,从而X=-1满足题目要求,此时Y=-1,于是X2K+1+1/Y2K+1=-2(K=0,1,2,??),X2K+1/Y2K=2(K=1,2,??),故所求代数式的值为0.

练习:

22222a,a,a,a,aA?a,a,a,a,aB?a,a,a,a,a12345123454.已知集合,,其中12345是正整数,

????第2页(共49页)

a1?a2?a3?a4?a5,a1?a4?10,若A?B中的所有元素之和为234,并满足A?B??a1,a4?,

求集合A。

三.容斥原理

基本公式:(1)card(A∪B)=card(A)+card(B)-card(A∩B); (2)card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)

问题:开运动会时,高一某班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,问同时参加田径比赛和球类比赛的有多少人?只参加游泳一项比赛的有多少人?

设A={参加游泳比赛的同学},B={参加田径比赛的同学},C={参加球类比赛的同学},则card(A)=15,card(B)=8,card(C)=14,card(A∪B∪C)=28,且card(A∩B)=3,card(A∩C)=3,card(A∩B∩C)=0,由公式②得28=15+8+14-3-3-card(B∩C)+0,即card(B∩C)=3,所以同时参加田径和球类比赛的共有3人,而只参加游泳比赛的人有15-3-3=9(人)

四、有限集合子集的个数

例3.一个集合含有10个互不相同的两位数。试证,这个集合必有2个无公共元素的子集合,此两子集的各数之和相等。

分析:两位数共有10,11,??,99,计99-9=90个,最大的10个两位数依次是90,91,??,99,其和为945,因此,由10个两位数组成的任意一个集合中,其任一个子集中各元素之和都不会超过

第3页(共49页)

945,而它的非空子集却有210-1=1023个,这是解决问题的突破口。

解:已知集合含有10个不同的两位数,因它含有10个元素,故必有210=1024个子集,其中非空子集有1023个,每一个子集内各数之和都不超过90+91+?98+99=945<1023,根据抽屉原理,一定存在2个不同的子集,其元素之和相等。如此2个子集无公共元素,即交集为空集,则已符合题目要求;如果这2个子集有公共元素,则划去它们的公共元素即共有的数字,可得两个无公共元素的非空子集,其所含各数之和相等。

说明:此题构造了一个抽屉原理模型,分两步完成,计算子集中数字之和最多有945个“抽屉”,计算非空子集得1023个“苹果”,由此得出必有两个子集数字之和相等。第二步考察它们有无公共元素,如无公共元素,则已符合要求;如有公共元素,则去掉相同的数字,得出无公共元素并且非空的两个子集,满足条件。

例4.设A={1,2,3,?,n},对XA,设X中各元素之和为Nx,求Nx的总和.

解:A中共有n个元素,其子集共有2n个。A中每一个元素在其非空子集中都出现了2n-1次,(为什么?因为A的所有子集对其中任一个元素i都可分为两类,一类是不含i的,它们也都是{1,2,?,i-1,i+1,?n}的子集,共2n-1个;另一类是含i的,只要把i加入到刚才的2n-1个子集中的每一个中去)。因而求A的所有子集中所有元素之和Nx的总和时,A中每一个元素都加了2n-1次,即出现

了2n-1次,故得 32n-1=n(n+1)32n-2

=132n-1+232n-1+?+n??2n-1=(1+2+?+n)22n-1=n(n+1)/2

说明:这里运用了整体处理的思想及公式1+2+?+n=(1/2)n(n+1),其理论依据是加法的交换律、结合律、乘法的意义等,集合中每一个元素都在总和中出现了2n-1次,是打开解题思路之门的钥匙。

练习:

第4页(共49页)

5.设集合A值.

{1,2,3,??,100},且对任意x,y∈A,必有2x≠y,求集合A中所含元素个数的最大

6.某地区网球俱乐部都有20名成员,举行14场单打比赛,每人至少上场1次.求证:必有6场比赛,其12名参赛者各不相同.

第5页(共49页)

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库高中数学竞赛特级教师培训教材在线全文阅读。

高中数学竞赛特级教师培训教材.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/1152529.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: