如今大多数分析是由电脑控制的特制电子仪器进行。为了测定被分析样本这些工具使用电磁波与物质相互作用,或物质的物理性质。通常,这些仪器自动进样,自动数据处理、甚至是自动制备样品。为了解如何仪器操作和哪些信息仪器可以提供就需要化学、物理、数学和工程学知识。常见的基础分析仪器和这些仪器分析出的测量值是接下来特定仪器技术章节的主题。分析化学家不但必须知道和了解化学分析和仪器,而且必须作为一个问题解决者为其他科学领域的同行。这意味着分析化学家可能需要理解材料科学、冶金、生物学、药理学、农业科学、食品科学、地质学、和其他领域。分析化学领域的迅猛发展。为了跟上发展,分析化学家必须了解基础的常见的分析技术,它们的性能,它们的缺点。为了跟上发展,分析化学家必须了解基础的常见的分析技术,它们的性能,它们的缺点。仅仅提供数据给其它科学家是不够的,分析化学家必须能够解读数据,并将结果的意义和数据的精度(可性),传达给使用这些数据的科学家们。除了了解科学方面的问题,现代分析化学家往往必须也要考虑例如时间限制和成本提供分析限制的因素。无论是否为政府监管机构、医院、私营公司或大学工作,分析数据必须在法律上站得住脚。它必须是已知的,有案可稽的质量。记录保存,尤其是计算机数据保存,评估精度和精密、统计数据、记录并确保数据符合合适的现代分析化学家的工作技术方面标准。 很多分析结果来表示一定数量的样品中测量到的物质的浓度。被测量的物质被称为分析物。常用的浓度单位包括摩尔浓度、质量分数和微量物质等级单位。在一克样品中百万分之一的重量就是一个微克分析,也就是样品的1×10-6微克/克。??对多组分体系,电感耦合等离子体质谱技术,可以检测出含量为万亿份之一的成分,即没课样品中含量为皮克的成分。让你感觉这些数量,100 万秒为12 天。十亿分之一秒为单位将在32年后,一万亿分之一是在3200年后。今天,立法者基于化合物的测量值和万亿分之水平的元素因为仪器方法可以检测万亿元水平分析物来设置水和空气中允许化学品的环境水平。立法者依赖着分析化学家负责生成的数据。
Unit 17 Crystallization 结晶
结晶在化工过程中占据重要地位是由于生产纯化学品的需要。除了制得的最终产品在外观上更具有吸引力的事实之外,结晶常被证明是最廉价、有时也是做简便的从不纯溶液中准备纯物质的方法。传统的蒸馏技术不能有效的分离沸点接近的液体或共沸混合物,而结晶常常可以使它们完全分开。有证据表明石油工业已经将注意力转向结晶技术以堆肥困难的分离。
适用于分离的方法很多也各不相同。晶体可以在液体或气态中生成,但在所有的情况下都必须首先达到过饱和,达到过饱和的方法取决于晶体系的性质;有些溶液仅通过冷却就很容易从它们的溶液中沉淀,而另一些需要经过蒸发达到更高浓度,在溶解度很高的情况下,或热不稳定溶液,必须向系统中加入另一种物质以降低溶液中溶质的溶解度。而且,可以通过两种物质的反应生成过饱和液体或气体,其中一种反应产物沉淀出来。 最常见的获得过饱和溶液的方法之一使通过冷却过程。如果溶液的溶解度随温度的降低而降低,刘强时一部分溶剂会沉淀出来,对搅拌充分的系统的缓慢的控制的冷却速度能够得到有规则尺寸的晶体。如果在冷却过程中蒸发部分溶剂,晶体的产率将增加。 冷却和蒸发
如果溶液中溶剂的溶解性质随温度变化很小,则必须审慎的蒸发部分溶剂以达到必要的过饱和以及晶体沉淀。冷却和蒸发技术广泛用于工业结晶。多数商业上重要的溶质溶液系统可以使用这些方法的一种或另一种。常用的冷却和蒸发结晶器将在后面给出。 冷却和蒸发的产率可由下式计算:
其中 Y=结晶产率(kg);W=初始溶剂质量(kg);V=失去溶剂的质量,蓄意的或不可避免的,通过蒸发(kg 每kg 初始溶剂);R=溶剂化(如水合物)与非溶剂化(如无水的)溶质的分子量比值;C1,C2=相应的初始和最终溶液浓度(kg 非溶剂化溶质每kg 溶剂)。由上式计算的产率是理论上的最大值,假设(a) C2 表示最终温度下的平衡浓度,和(b)当从母液中分离出来的晶体洗涤时没有溶质损失。 Controlled Seeding 控制加入晶种
在结晶过程中必须不惜任何代价避免副产物(细糖晶粒)的产生;决不能让溶液变得不稳定。蓄意添加物,即精心选择的晶种,只要结晶沉淀仅在这些晶核上发生就是允许的。通过缓缓搅拌是晶种在溶液中均匀分散,如果仔细控制温度,则对最终产品尺寸进行相当程度的控制是可能的。精选的晶种经常用于工业结晶 中;加入的晶种的精确重量取决于溶质沉淀、晶种粒度和产品粒度:
其中Ws 和Wp 是重量。而Ls 和Lp 相应的为晶粒和产品的主要粒子尺寸。产品重量Wp 为晶体产率Y 加上晶种的重量,如Wp=Y+Ws 和Ws= ;晶体产率,是通过式(1)的溶解度数据计算而得到的。
在糖的沸腾试样中常加入 5μ m 大小的晶种;这些微小的晶体是在惰性介质中经长期球磨研磨而得到的,惰性介质如异丙醇或矿物油,500g 这种晶体足以用于50m 3 糖膏。 晶种不必含有待结晶物,除非需要绝对纯的产品。使用同晶化合物的微小晶体来引发结晶。例如,磷酸盐常作为砷酸盐溶液的晶种。一定量的四硼酸钠十水合物可以引发硫酸钠十水合物的结晶。结晶有机同系物、衍生物和同分异构体常使用诱导结晶;苯酚可诱导m-甲酚,乙基乙酰苯胺可诱导甲基乙酰苯胺。
在控温的反应中,结晶可称为“控制的结晶”,因为温度是控制的,所以在整个反应过程中,体系保持在亚稳定状态,微晶生长的速度完全由冷却速度控制,没有纯晶体的突然沉积,因为体系没有进入不稳定带,可长出规则的,预定尺寸的晶体。工业规模的结晶可以用这种方法实现。
在工业结晶中伴随产生的晶种尺寸实际上非常小,而考虑到它们的极小的尺寸,晶粒数目将非常巨大。如果,简单化地,考虑到球直径d 和密度ρ ,一个晶粒的尺寸为π /6ρ d 3 。因此,100g0.1mm(~150 目)的密度为 2g/cm 3 的晶种,大约包含1 亿个独立粒子,每个离子都是潜在晶体。在控制生长中,结晶器中的液体不允许产生晶核,剧烈的搅动以及动力学和热力学震动应该避免。如果,即使采取了预防措施,晶核仍然出现,有些系统需要启动临时的晶粒转移,通过一个精细汽水阀是废液连续循环是这样的方法之一。
Salting-out Crystallisation 盐析结晶
过饱和溶液能够有效的实现过饱和溶液结晶的方法是在体系中加入一些能够降低溶质在溶剂中溶解度的物质,加入的物质可以是液体、固体或气体,常称为稀释剂或沉淀剂,常用的是液体稀释剂,这种过程称为盐析、沉淀或盐析结晶。稀释剂要求能和原始溶液的溶剂混溶,至少在涉及到的温度范围内是可溶的,而溶质在其中相对不溶,而且,这种溶液-稀释剂混合物易于分离,如通过精馏。
尽管盐析在工业上应用很广,但关于它在结晶过程的应用方面发表的数据很少。这种过程是经常遇到的,例如,通过控制水的加入量从水混溶有机溶剂中结晶有机物质;在这种联系中常用到“水析”这个词。盐析或盐析结晶的好处如下:可以制备非常浓的原始溶液,常常非常简单,通过蒸馏在合适溶剂中的不纯结晶物得到。在盐析的同时冷却可以提高溶质的回收率。如果溶质在最处的溶液中溶解度很大,高的溶解温度是不合适的,在结晶过程中每批次的温度都控制得很低;这对于热不稳定物质是很有利得。当由于不需要的不纯物在溶剂-稀释剂混合物中溶解度很大,而使得母液中保留了不必要的不纯物时,提纯变得非常简单。大概盐析结晶的最大缺点就是需要分离单元来处理相对大量的母液,以分离溶剂和稀释剂,其中得一种或两种时贵重的。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库应用化学专业英语翻译(第二版)(2)在线全文阅读。
相关推荐: