sigma=median(abs(det))/0.675; alpha=2;
thr=wpbmpen(tree,sigma,alpha); keepapp=1;
xd=wpdencmp(tree,'s','nobest',thr,keepapp); T=400;
Vaule1=zeros(1,50); for n=1:1:50
B=sum(xd((1+(n-1)*T):(n*T)).^4)/T; Rms=sqrt(sum(xd((1+(n-1)*T):(n*T)).^2)/T); Vaule1(n)=B/(Rms^4); end;
s=importdata('E:\\原始信号\\正常\\97.mat'); s_value1=s.X097_DE_time'; s_cutvalue=s_value1(1:24000); tree=wpdec(s_cutvalue,3,'sym6'); det=wpcoef(tree,2);
sigma=median(abs(det))/0.675; alpha=2;
thr=wpbmpen(tree,sigma,alpha); keepapp=1;
xd=wpdencmp(tree,'s','nobest',thr,keepapp); Vaule2=zeros(1,50); for n=1:1:50
B=sum(xd((1+(n-1)*T):(n*T)).^4)/T;
Rms=sqrt(sum(xd((1+(n-1)*T):(n*T)).^2)/T); Vaule2(n)=B/(Rms^4); end;
s=importdata('E:\\原始信号\\外圈故障\\130.mat'); s_value1=s.X130_DE_time'; s_cutvalue=s_value1(1:24000); tree=wpdec(s_cutvalue,3,'sym6'); det=wpcoef(tree,2);
sigma=median(abs(det))/0.675; alpha=2;
thr=wpbmpen(tree,sigma,alpha); keepapp=1;
xd=wpdencmp(tree,'s','nobest',thr,keepapp); Vaule3=zeros(1,50); for n=1:1:50
B=sum(xd((1+(n-1)*T):(n*T)).^4)/T; Rms=sqrt(sum(xd((1+(n-1)*T):(n*T)).^2)/T); Vaule3(n)=B/(Rms^4); end;
s=importdata('E:\\原始信号\\滚珠故障\\118.mat'); s_value1=s.X118_DE_time'; s_cutvalue=s_value1(1:24000); tree=wpdec(s_cutvalue,3,'sym6');
det=wpcoef(tree,2);
sigma=median(abs(det))/0.675; alpha=2;
thr=wpbmpen(tree,sigma,alpha); keepapp=1;
xd=wpdencmp(tree,'s','nobest',thr,keepapp); Vaule4=zeros(1,50); for n=1:1:50
B=sum(xd((1+(n-1)*T):(n*T)).^4)/T; Rms=sqrt(sum(xd((1+(n-1)*T):(n*T)).^2)/T); Vaule4(n)=B/(Rms^4); end;
s=importdata('E:\\待诊断信号\\1.mat'); s_value1=s;
s_cutvalue=s_value1(1:24000); tree=wpdec(s_cutvalue,3,'sym6'); det=wpcoef(tree,2);
sigma=median(abs(det))/0.675; alpha=2;
thr=wpbmpen(tree,sigma,alpha); keepapp=1;
xd=wpdencmp(tree,'s','nobest',thr,keepapp); T=400;
Vaule5=zeros(1,50); for n=1:1:50
B=sum(xd((1+(n-1)*T):(n*T)).^4)/T; Rms=sqrt(sum(xd((1+(n-1)*T):(n*T)).^2)/T); Vaule5(n)=B/(Rms^4); end;
y1(1)=(Vaule1(1)+Vaule1(2)+Vaule1(3))/3; y2(1)=(Vaule2(1)+Vaule2(2)+Vaule2(3))/3; y3(1)=(Vaule3(1)+Vaule3(2)+Vaule3(3))/3; y4(1)=(Vaule4(1)+Vaule4(2)+Vaule4(3))/3; y5(1)=(Vaule5(1)+Vaule5(2)+Vaule5(3))/3; y1(50)=(Vaule1(50)+Vaule1(49)+Vaule1(48))/3; y2(50)=(Vaule2(50)+Vaule2(49)+Vaule2(48))/3; y3(50)=(Vaule3(50)+Vaule3(49)+Vaule3(48))/3; y4(50)=(Vaule4(50)+Vaule4(49)+Vaule4(48))/3; y5(50)=(Vaule5(50)+Vaule5(49)+Vaule5(48))/3; for n=2:1:49
y1(n)=(Vaule1(n-1)+Vaule1(n)+Vaule1(n+1))/3; y2(n)=(Vaule2(n-1)+Vaule2(n)+Vaule2(n+1))/3; y3(n)=(Vaule3(n-1)+Vaule3(n)+Vaule3(n+1))/3; y4(n)=(Vaule4(n-1)+Vaule4(n)+Vaule4(n+1))/3; y5(n)=(Vaule5(n-1)+Vaule5(n)+Vaule5(n+1))/3; end; %绘图
k=linspace(1,50,50);
plot(k,y1(k),'--.k',k,y2(k),'-r',k,y3(k),'-pb',k,y4(k),'--*g',k,y5(k),'m:d');
legend('内圈故障','正常''外圈故障',’故障’,’诊断信号’);
小结:通过现象观察可以看出,以上得到的图形都是外圈故障。 五、 实验总结
这个实验室研究直升机中可能出现的滚动轴承的振动信号特征分析,用到的工具是MATLAB软件,可以对图形做更好的分析。由于直升机在运动过程中轴承会摩擦,导致磨损,这对直升机来说是致命的,所以要做故障检测,通过现在所学的傅里叶函数的知识再结合软件绘图,我们就可以很好的解决这个问题。 六、参考文献
1.蔡旭晖.刘卫国.蔡立燕. MATLAB基础与应用教程.人民邮电出版社.2009
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库滚动轴承的振动信号特征分析报告(2)在线全文阅读。
相关推荐: