4. ANALYSIS AND RESULTS
4.1 RESIDUAL COMPRESSIVE STRENGTH VS. TEMPERATURE
From Table 1, at 100°C sustained elevated temperature it is seen that the residual strength of air cooled specimens of mixes M1, M2 and M3 has increased in strength 114% for M1 mix, 109% for M2 mix and 111% for M3 mix for 6 hours duration of exposure. When the sustained elevated temperature is to 200°C for air cooled specimens there is a decrease in strength up to 910% approximately for M1 mix for a duration of 6 hours, but in case of M2 mix it is 82% and for M3 mix it is 63% maximum for 6 hours duration of exposure. When the concrete mixes M1, M2 and M3 are exposed to 300°C sustained temperature there is a reduction in strength up to 78% for M1 mix for 6 hour duration of exposure.
土木工程混凝土论文中英文资料外文翻译文献
4.2 RESIDUAL COMPRESSIVE STRENGTH VS DURATION OF EXPOSURE From Table 1, result shows that heating up to 100°C for 2 hours and 4 hours, the residual strength of mix M1 has decreased where as the residual strength of mix M2 and M3 has increased. The residual strength is further increased for 6 hours duration of exposure in all the three mixes M1, M2 and M3 even beyond the strength at room temperature. When the specimens of mixes M1, M2 and M3 are exposed to 200°C for 2,4 and 6 hours of duration, it is observed that the residual strength has decreased below the room temperature and has reached 92% for M1 mix, 82 and 73% for M2 and M3 mix respectively. Concrete cubes of mixes M1, M2 and M3 when subjected to 300°C temperature for 2,4 and 6 hours the residual strength for mix M1 reduces to 92% for 2 hours up to 78% for six hours duration of exposure, for M2 mix 90% for 2 hours duration of exposure up to 76% for six hour duration of exposure, for M3 mix 88% up to 68% between 2 and 6 hours of duration of exposure.
5. IMPACT STRENGTH OF CONCRETE
5.1 RESIDUAL IMPACT STRENGTH VS TEMPERATURE
From the table 1, it can be observed that for the sustained elevated temperature of 100°C the residual impact strength of all the specimens reduces and vary between 20 and 50% for mix M1, 15 to 40% for mix M2 and M3. When the sustained elevated temperature is 200°C the residual impact strength of all the mixes further decreases. The reduction is around 60-70% for mix M1, 55 to 65% for M2 and M3 mix. When the sustained elevated temperature is 300°C it is observed that the residual impact strength reduces further and vary between 85 and 70% for mix M1 and 85 to 90% for mix M2 and mix M3.
5.2 RESIDUAL IMPACT STRENGTH VS DURATION OF EXPOSURE
From the Table 1 and Figures 1 to 3, it can be observed that there is a reduction in impact strength when the sustained elevated temperature is 100°C for 2 hrs, 4 hrs and 6 hrs, and its range is 15 to 50% for all the mixes M1, M2 and M3. The influence of duration of exposure is higher for mix M1 which decreases more rapidly as compared to mix M2 and mix M3 for the same duration of exposure. When the specimens are subjected to sustained elevated temperature of 200°C for 2,4 and 6 hour of duration, further reduction in residual impact strength is observed as compared to at 100°C. The reduction is in the range of 55-70% for all the mixes. The six hour duration of exposure has a greater influence on the residual impact strength of concrete. When the sustained elevated temperature is 300°C for 2,4 and 6 hours duration of exposure the residual
土木工程混凝土论文中英文资料外文翻译文献
impact strength reduces. It can be seen that both temperature and duration of exposure have a very high influence on the residual impact strength of concrete which shows a reduction up to 90% approximately for all the mixes.
6. CONCLUSION
The compressive strength of concrete increases at 100oC when exposed to sustained elevated temperature. The compressive strength of concrete decreases when exposed to 200°C and 300°C from 10 to 30% for 6 hours of exposure. Residual impact strength reduces irrespective of temperature and duration. Residual impact strength decreases at a higher rate of 20% to 85% as compared to compressive strength between 15% and 30 % when subjected to sustained elevated temperature. The impact strength reduces at a higher rate as compared to compressive strength when subjected to sustained elevated temperature.
土木工程混凝土论文中英文资料外文翻译文献
混凝土受持续高温影响的强度的研究
混凝土具有显着的耐火性能。在电力,石油部门核反应堆和混凝土接触在高温环境相当一段时间,因混凝土对火的强度和持续时间很大程度上取决于温度和时间。这些持续高温的影响不容忽视。根据多年的研究数据显示,持续升高温度可从几个小时不同的实际情况解释,在这种情况下混凝土的性能最重要的因素还是它的结构承受高强度火。持续受到结构的影响研究高温下变得更加重要,因为它涉及到敏感的结构,这是更容易袭击和意外事故。本文对混凝土的影响研究受到持续升高温度已经讨论过。实验已进行了180份标本,沿180同伴立方体试样。试验中一直以温度100℃,200℃和300℃的接触时间2小时,4小时和6小时为参照,结果是在理论和实践上进行分析和总结。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说公务员考试土木工程混凝土论文中英文资料外文翻译文献(2)在线全文阅读。
相关推荐: