77范文网 - 专业文章范例文档资料分享平台

应用DNA 芯片数据挖掘复杂疾病相关基因的集成决策方法(6)

来源:网络收集 时间:2021-09-24 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

抽样技术产生大量不同结构的学习样本,可以肯定大部分的高相关基因或部分相关基因可被挖掘出来。在这部分

工作被完成之后,一个随之而来的工作是研究一个更复杂的生物学课题:这些基因是如何作用或相互作用,从而

导致我们所观察的表型?也就是所谓的目标专一性基因网络,正是我们目前研究的课题。

致谢 我们感谢二位匿名专家对本文初稿的评审意见。无论是对本文的修改或对我们进一步的工作都受益匪浅.

参 考 文 献

1

2

3

4

5

6

7 DeRisi, J L, Iyer, V R, Brown, P O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science,1997,278:680~686 Golub, T R, Slonim, D K, Tamayo, P et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science,1999,286:531~537 Ambroise, C, McLachlan, G J. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci U S A,2002,99:6562~6566 Bo, T, Jonassen, I. New feature subset selection procedures for classification of expression profiles. Genome Biol,2002,3:RESEARCH0017 Chow, M L, Moler, E J, Mian, I S. Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. Physiol Genomics,2001,5:99~111 Hastie, T, Tibshirani, R, Eisen, M B et al. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol,2000,1:RESEARCH0003 Li, L, Weinberg, C R, Darden, T A et al. Gene selection for sample classification based on gene expression data: study

of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics,2001,17:1131~1142

Burke, H B. Discovering patterns in microarray data. Mol Diagn,2000,5:349~357

Breiman, L. Random forests. Machine Learning,2001,45:5~32

Breiman, L. Bagging predictors. Machine Learning,1996,24:123~140

Shannon, W D, Province, M A, Rao, D C. Tree-based recursive partitioning methods for subdividing sibpairs into

relatively more homogeneous subgroups. Genet Epidemiol,2001,20:293~306 8 9 10 11

应用DNA 芯片数据挖掘复杂疾病相关基因的集成决策方法

第1期 李 霞等:应用DNA芯片数据挖掘复杂疾病相关基因的集成决策方法 9 12

13

14

15 Province, M A, Shannon, W D, Rao, D C. Classification methods for confronting heterogeneity. Adv Genet,2001,42:273~286 Mills, J C, Gordon, J I. A new approach for filtering noise from high-density oligonucleotide microarray datasets. Nucleic Acids Res,2001,29:E72 Hall, M. Correlation-based Feature Selection for Machine Learning. Hamilton: University of Waikato, 1998. PhD Thesis Blum, A L, Langley, P. Selection of relevant features and examples in machine learning. Artificial

Intelligence,1997,97:245~271

Kohavi, R, John, G H. Wrappers for feature subset selection. Artificial Intelligence,1997,97:273~324

Xing, E P, Jordan, M I, Karp, R M. Feature Selection for High-Dimensional Genomic Microarray Data. In: Machine

Learning: Proceedings of the Eighteenth International Conference, San Mateo, CA, 2001. San Fransisco:Morgan

Kaufmann

Dietterich, T G. Ensemble Methods in Machine Learning. In: Kittler J, Roli F eds. First International Workshop on

Multiple Classifier Systems, Lecture Notes in Computer Science, New York: Springer Verlag, 2000, 1~15

Guo, Z, Li, X, Rao, S. Analysis of Medical Data: An Introduction to Bioinformatics, Harbin, China: Harbin Publisher,

2001

Zhang, H, Yu, C Y, Singer, B et al. Recursive partitioning for tumor classification with gene expression microarray

data. Proc Natl Acad Sci U S A,2001,98:6730~6735

Alon, U, Barkai, N, Notterman, D A et al. Broad patterns of gene expression revealed by clustering analysis of tumor

and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A,1999,96:6745~6750

Kowalski, J, Denhardt, D T. Regulation of the mRNA for monocyte-derived neutrophil-activating peptide in

differentiating HL60 promyelocytes. Mol Cell Biol,1989,9:1946~1957

Su, Y, Murali, T M, Pavlovic, V et al. RankGene: identification of diagnostic genes based on expression data.

Bioinformatics,2003,19:1578~1579

Yeoh, E J, Ross, M E, Shurtleff, S A et al. Classification, subtype discovery, and prediction of outcome in pediatric

acute lymphoblastic leukemia by gene expression profiling. Cancer Cell,2002,1:133~143

Haseman, J K, Elston, R C. The investigation of linkage between a quantitative trait and a marker locus. Behav

Genet,1972,2:3~19 16 17 18 19 20 21 22 23 24 25

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说公务员考试应用DNA 芯片数据挖掘复杂疾病相关基因的集成决策方法(6)在线全文阅读。

应用DNA 芯片数据挖掘复杂疾病相关基因的集成决策方法(6).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/gongwuyuan/1246814.html(转载请注明文章来源)

相关推荐:

Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: