77范文网 - 专业文章范例文档资料分享平台

线性代数考研公式大全(5)

来源:网络收集 时间:2019-02-21 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

??a1????b1?? 设???a?2?,???b2?,则 ??,???aT1b?ab???ab ??? ??????122nn????an????b?n?? 2.性质 ①对称性:

??,?????,??

②双线性性质:??1??2,?????1,?????2,?? ??,?1??2????,?1????,?2?

?c?,???c??,?????,c??

?n ③正交性:

??,???0,且??,???0??0 ??,????a2i

i?1 3.长度与正交 ??n 向量?的长度

??,????a2i

i?1 ??0???0

c??c?

单位向量:长度为1的向量

???2?? ?1??0???0???2????,?1?,?0, ?0????0?????2????2?? 若??0,则

??是单位向量,称为?的单位化。

?1?????1 两个向量?,?如果内积为0:

??,???0,称它们是正交的。

如果n维向量组?1,?2,?,?s两两正交,并且每个都是单位向量,则称为单位正交向量组。 例1.如果向量组?1,?2,?,?s两两正交,并且每个向量都不为零向量,则它们线性无关。 证:记

A?? ?1,?2,?,?s?,则

?2??1000?? ATA???0?2200??00?0? ???000?2s?? 21

则r?ATA??s,?r?A??s即r??1,?,?s??s。

例2.若

A是一个实的矩阵,则r?ATA??r?A?。

二.正交矩阵 一个实n阶矩阵A如果满足AAT?E,就称为正交矩阵。AT?A?1

定理

A是正交矩阵?A的行向量组是单位正交向量组。

?A的列向量组是单位正交向量组。 例3.正交矩阵A保持内积,即

?A?,A?????,??

A???

证:

?A?,A????TATA???T????,??

? 例4.(04)A是3阶正交矩阵,并且a1,求Ax??1??0?11???的解。

?0?? 三.施密特正交化方法

这是把一个线性无关的向量组改造为与之等价的单位正交向量组的方法。

?2????1???c?

设?1,?2,?3线性无关 ①正交化:令?1??1

?2?????1,?2?2??? 1,?1?1 (设?2??2?k?1,??2,?1????2,?1??k??1,?1?

当k????2,?1??时,?2,?1正交。

) 1,?1? ???3??3??1,?3?????2,?3?1??2

1,?1???2,?2? ②单位化:令???1?31?,?2??21?,?3?2?

3 22

则?1,?2,?3是与?1,?2,?3等价的单位正交向量组。 四.实对称矩阵的对角化

A是一个实的对称矩阵,则

①A的每个特征值都是实数。

②对每个特征值?,重数?n?r??E?A?。即A可以对角化。

③属于不同特征值的特征向量互相正交。 于是:存在正交矩阵Q,使得Q?1AQ是对角矩阵。

对每个特征值?,找??E?A?x?0的一个单位正交基础的解,合在一起构造正交矩阵。 设

A是6阶的有3个特征值?1(二重),?2(三重),?1(一重)

找?1的2个单位正交特征向量?1,?2。 找?2的3个单位正交特征向量?3,?4,?5。 找?3的一个单位特征向量?6。 Q???1,?2,?3,?4,?5,?6?

例5.(04)

A是3阶实对称矩阵,r?A??2,6是它的一个二重特征值,

?1??2 ??1??,???1???和?1???2??都是属于6的特征向量。

??0????1????3?? (1)求

A的另一个特征值。

(2)求A。 解:(1)另一个特征值为0。

? (2)设?x1??x?2?是属于0的特征向量,则

??x3???x1?x2 ??0?2x1?x2?x3?0

??x1?2x2?3x3?0 此方程组n?3,r?A??2,n?r?A??1,基础解系包含一个解,任何两个解都相关。 于是,每个非零解都是属于0的特征向量。

?110??101??1 ??211?????01?1?? ??????1??是一个解。 ??1?23????000?????1?? 23

?121??6120?????60? A?11?1???6?01?1??060??????110660??100422????? ?2111266???01024?2?

?1?1?1000??0012?24?????2??42??4?2? A??2?2?24???

附录二 向量空间

1.n维向量空间及其子空间

记为R由全部n维实向量构成的集合,这是一个规定了加法和数乘这两种线性运算的集合,我们把它称为n维向量空间。 设V是R的一个子集,如果它满足 (1)当?1,?2都属于V时,?1nn??2也属于V。

(2)对V的每个元素?和任何实数c,c?也在V中。 则称V为R的一个子空间。 例如n元齐次方程组 但是非齐次方程组

nnAX?0的全部解构成Rn的一个子空间,称为AX?0的解空间。

AX??的全部解则不构成Rn的子空间。

对于R中的一组元素?1,?2,?,?s,记它们的全部线性组合的集合为 L?1,?2,?,?s

2.基,维数,坐标

设V是R的一个非0子空间(即它含有非0元素),称V的秩为其维数,记作dimV。 称V的排了次序的极大无关组为V的基。 例如AX 又如dimn????c1?1?c2?2???cs?sci任意?,它也是Rn的一个子空间。

?0的解空间的维数为n?r?A?,它的每个有序的基础解系构成基。

?L??1,?2,?,?s???r??1,?2,?,?s?,?1,?2,?,?s的每个有序的极大无关组构成基。

设?1,?2,?,?k是V的一个基,则V的每个元素?都可以用?1,?2,?,?k唯一线性表示: ??c1?1?c2?2???ck?k

24

称其中的系数

?c1,c2,?,ck?为?关于基?1,?2,?,?k的坐标,它是一个k维向量。

坐标有线性性质:

(1)两个向量和的坐标等于它们的坐标的和: 如果向量?和?关于基?1,?2,?,?k的坐标分别为的坐标为

?c1,c2,?,ck?和?d1,d2,?,dk?,则???关于基?1,?2,?,?k?c1?d1,c2?d2,?,ck?dk???c1,c2,?,ck???d1,d2,?,dk?

?关于基

(2)向量的数乘的坐标等于坐标乘数: 如果向量

?1,?2,?,?k的坐标为

?c1,c2,?,ck?,则

c?关于基

?1,?2,?,?k的坐标为

?cc1,cc2,?,cck??c?c1,c2,?,ck?。

坐标的意义:设V中的一个向量组?1,?2,?,?t关于基?1,?2,?,?k的坐标依次为?1,?2,?,?t,则?1,?2,?,?t和

?1,?2,?,?t有相同的线性关系。

于是,我们可以用坐标来判断向量组的相关性,计算秩和极大无关组等等。

3.过渡矩阵,坐标变换公式

设?1,?2,?,?k和?1,?2,?,?k都是V的一个基,并设?1在?1,?2,?,?k中的坐标为

?c1i,c2i,?,cki?,构造矩阵

?c11??c21 C?????c?k1?c1k??c22?c2k?,

?????ck2?ckk??c12 称C为?1,?2,?,?k到?1,?2,?,?k的过渡矩阵。

??1,?2,?,?k????1,?2,?,?k?C。

?1,?2,?,?kT 如果V中向量?在其?1,?2,?,?k和 x ? ?中的坐标分别为

??x1,x2,?,xk?T和

y??y1,y2,?,yk?,则

???1,?2,?,?k?x

???1,?2,?,?k?y???1,?2,?,?k?Cy

于是关系式: x?Cy

称为坐标变换公式。

4.规范正交基

25

如果V的一基?1,?2,?,?k是单位正交向量组,则称为规范正交基。 两个向量的内积等于在规范正交基下的它们坐标的内积。 设?的坐标为 则

?c1,c2,?,ck?,?的坐标为?d1,d2,?,dk?,

??,???c1d1?c2d2???ckdk

两个规范正交基之间的过渡矩阵是正交矩阵。 做题思路 先化简再计算

例5.(03)设n维列向量???a,0,?,0,a?T,a1?0。规定A?E???T,B?E???T。已知AB?E,求a。

a注意化简技巧(中间过程也很重要)

?10??01 例13.(00)己知A*??10??0?3?00100??0??1?1,求矩阵B,使得ABA?BA?3E. 0??8??证明一个矩阵可逆切入点 行列式=0 ,证明Ax=E , 证明两式相等切入点 AB=某个等式=BA

AB?E?BA?E)

例20.设n阶矩阵A和B满足等式AB?aA?bB,ab?0, 证明:AB?BA

(从对称性想到AB可逆BA也可逆的着手点

26

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库线性代数考研公式大全(5)在线全文阅读。

线性代数考研公式大全(5).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/483294.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: