77范文网 - 专业文章范例文档资料分享平台

2010中考数学专题复习——全等三角形(4)

来源:网络收集 时间:2018-11-26 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

全等三角形答案

一.选择题

1.A 2.D 3.C 4.B 5.B 6.D 二.填空题

1. (1)(2)(3)(5) 2. 3n+1 3. 120 4. 2,18 5. 正五边形

6.?C??D或?ABC??BAD或AC?BD或?OAD??OBC7. 全等三角形的对应角相等 三.解答题 1. 证明:连结AB

?AD?BC?在△ADB与△ACB中?AB?BA∴△ADB≌△ACB∴OC=OD.

?AC?BD?P

E F

B

2. 解:(1)作图略; A (2)取点F和画AF正确(如图);

添加的条件可以是:F是CE的中点;

AF⊥CE;∠CAF=∠EAF等。(选一个即可)

C D

3. (1)证明:在ΔABC和ΔDCB中

?AB?DC??BC?CB ?AC?BD?∴ΔABC≌ΔDCB(SSS) (2)等腰三角形。

4. 证明:(1)证明:方法一:在△ACD和△BCE中,

AC=BC,

∠DCA=∠ECB=90°, DC=EC,

∴ △ACD≌△BCE(SAS). ………………2分 ∴ ∠DAC=∠EBC. ………………………3分 ∵ ∠ADC=∠BDF,

∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.

E

F D B

C A

新课标第一网----免费课件、教案、试题下载

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

∴ ∠BFD=90°.

∴ AF⊥BE. …………………………………5分 方法二:∵ AC=BC,DC=EC, ∴

CDAC?CEBC.即tan∠DAC=tan∠EBC.

B F D ∴ ∠DAC=∠EBC.(下略)…………………3分 (2)AF⊥BE. …………………………………6分 ∵ ∠ABC=∠DEC=30°,∠ACB=∠DCE=90°, ∴ BC?EC=tan60°. ……………………7分

ACDC∴ △DCA∽△ECB. …………………………8分 ∴ ∠DAC=∠EBC. …………………………9分 ∵ ∠ADC=∠BDF,

∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.

E

C

A

∴ ∠BFD=90°. ∴ AF⊥BE. ……………………………………………………………………10分 5. 解:⑴证明:∵AC平分∠MAN,∠MAN=120°, ∴∠CAB=∠CAD=60°, ∵∠ABC=∠ADC=90°,

∴∠ACB=∠ACD=30°,????1分 ∴AB=AD=

12MCAC,????????2分

E DAF BG N∴AB+AD=AC。????????3分 ⑵成立。???????????r?4分

证法一:如图,过点C分别作AM、AN的垂线,垂足分别为E、F。 ∵AC平分∠MAN,∴CE=CF.

∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,

∴∠CDE=∠ABC,????????????????????????5分 ∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,????????6分 ∴AB+AD=AF+BF+AE-ED=AF+AE,由⑴知AF+AE=AC,

∴AB+AD=AC??????????????????????????7分 证法二:如图,在AN上截取AG=AC,连接CG.

∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,????5分 ∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,

∴∠CBG=∠ADC,∴△CBG≌△CDA,??????????????6分 ∴BG=AD,

∴AB+AD=AB+BG=AG=AC,????????????????7分 ⑶①3;???????????????????????????8分 ②2cos?2.???????????????????????????9分

证明:由⑵知,ED=BF,AE=AF, 在Rt△AFC中,cos?CAF?AFAC,即cos?2?AFAC,

新课标第一网----免费课件、教案、试题下载

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

∴AF?ACcos?2,????????????????????????10分

?∴AB+AD=AF+BF+AE-ED=AF+AE=2AF?ACcos26. 解:(1)证明:?BM?NC,?ABM??BCN,AB?BC,

,????11分

?△ABM≌△BCN, ??BAM??CBN,

??BQM??BAQ??ABQ??MBQ??ABQ?60.

?(2)①是;②是;③否. ②的证明:如图,

??ACM??BAN?120,CM?AN,AC?AB, ?△ACM≌△BAN, ??AMC??BNA,

?Q N A

B

?????NQA??NBC??BMQ??NBC??BNA?180?60?120, ??BQM?60.

?C M

(第②题图)

③的证明:如图,

?BM?CN,AB?BC, ?Rt△ABM≌Rt△BCN,

??AMB??BNC.又?NBM??BNC?90,

?A D N

Q ??QBM??QMB?90,

??BQM?90,即?BQM?60.

???B

M C

(第③题图)

7. (Ⅰ)证明 将△ACM沿直线CE对折,得△DCM,连DN,

CM则△DCM≌△A. ··························································································· 1分

C 有CD?CA,DM?AM,?DCM??ACM,?CDM??A. 又由CA?CB,得 CD?CB. ········································ 2分 由?DCN??ECF??DCM?45???DCM,

?BCN??ACB??ECF??ACM ,

A

?90??45???ACM?45???ACMM E

N

D F

B

得?DCN??BCN. ··································································································· 3分 又CN?CN,

DN∴△CBN≌△C. ······························································································ 4分

有DN?BN,?CDN??B.

∴?MDN??CDM??CDN??A??B?90?. ····························································· 5分 ∴在Rt△MDN中,由勾股定理,

新课标第一网----免费课件、教案、试题下载

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

得MN2?DM2?DN22.即MN22?AM2?BN2. ························································ 6分

(Ⅱ)关系式MN?AM?BN2仍然成立. ····························································· 7分

C 证明 将△ACM沿直线CE对折,得△GCM,连GN, 则△GCM≌△ACM. ······················································ 8分

G E M

A N F

B

有CG?CA,GM?AM,

?GCM??ACM,?CGM??CAM.

又由CA?CB,得 CG?CB.

由?GCN??GCM??ECF??GCM?45?,

?BCN??ACB??ACN?90??(?ECF??ACM)?45???ACM.

得?GCN??BCN. ······························································································· 9分 又CN?CN,

GN∴△CBN≌△C.

有GN?BN,?CGN??B?45?,?CGM??CAM?180???CAB?135?, ∴?MGN??CGM??CGN?135??45??90?. ∴在Rt△MGN中,由勾股定理, 得MN2?GM2?GN2.即MN2?AM2?BN2.·························································10分

8. 证明:(1)①??BAC??DAE

??BAE??CAD ?AB?AC,AD?AE

?△ABE≌△ACD ?BE?CD ················································································································· 3分

②由△ABE≌△ACD得?ABE??ACD,BE?CD

?M,N分别是BE,CD的中点,?BM?CN························································· 4分

又?AB?AC

?△ABM≌△ACN

?AM?AN,即△AMN为等腰三角形 ····································································· 6分

(2)(1)中的两个结论仍然成立.············································································· 8分 (3)在图②中正确画出线段PD 由(1)同理可证△ABM≌△ACN

??CAN??BAM ??BAC??MAN

又??BAC??DAE

??MAN??DAE??BAC

?△AMN,△ADE和△ABC都是顶角相等的等腰三角形········································10分 ??PBD??AMN,?PDB??ADE??ANM ?△PBD∽△AMN 12分

新课标第一网----免费课件、教案、试题下载

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

9. 证明:? AC∥DE, BC∥EF??CAB??EDF,?ABC??DFE?AC=DE??ABC??DFE, ∴AB=DF ∴AF=BD 10. 证明:?AC∥DE,

??ACD??D,?BCA??E.、)

,又

又??ACD??B,

??B??D.

又?AC?CE,

?△ABC≌△CDE.

(6分

11.

解:(1)如图1; (2)如图2; (3)4. (8分)

2cm 40° 1cm 图1

40° 1cm 图2

2cm

12.证明:(1)在△ABC和△ADC中 ??1??2??AC?AC ??3??4??△ABC≌△ADC.

(2)?△ABC≌△ADC,?AB?AD.又??1??2,?BO?DO.

13. 证明: ?四边形ABCD和四边形DEFG都是正方形

?AD?CD,DE?DG,?ADC??EDG?90,

? ??ADE??CDG,?△ADE≌△CDG,?AE?CG

14. 证明:(1)?CF平分?BCD,??BCF??DCF.

在△BFC和△DFC中, ?BC?DC,? ??BCF??DCF,?FC?FC.??△BFC≌△DFC.

新课标第一网----免费课件、教案、试题下载

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2010中考数学专题复习——全等三角形(4)在线全文阅读。

2010中考数学专题复习——全等三角形(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/310101.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: