新课标第一网(www.xkb1.com)--中小学教学资源共享平台
全等三角形答案
一.选择题
1.A 2.D 3.C 4.B 5.B 6.D 二.填空题
1. (1)(2)(3)(5) 2. 3n+1 3. 120 4. 2,18 5. 正五边形
6.?C??D或?ABC??BAD或AC?BD或?OAD??OBC7. 全等三角形的对应角相等 三.解答题 1. 证明:连结AB
?AD?BC?在△ADB与△ACB中?AB?BA∴△ADB≌△ACB∴OC=OD.
?AC?BD?P
E F
B
2. 解:(1)作图略; A (2)取点F和画AF正确(如图);
添加的条件可以是:F是CE的中点;
AF⊥CE;∠CAF=∠EAF等。(选一个即可)
C D
3. (1)证明:在ΔABC和ΔDCB中
?AB?DC??BC?CB ?AC?BD?∴ΔABC≌ΔDCB(SSS) (2)等腰三角形。
4. 证明:(1)证明:方法一:在△ACD和△BCE中,
AC=BC,
∠DCA=∠ECB=90°, DC=EC,
∴ △ACD≌△BCE(SAS). ………………2分 ∴ ∠DAC=∠EBC. ………………………3分 ∵ ∠ADC=∠BDF,
∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.
E
F D B
C A
新课标第一网----免费课件、教案、试题下载
新课标第一网(www.xkb1.com)--中小学教学资源共享平台
∴ ∠BFD=90°.
∴ AF⊥BE. …………………………………5分 方法二:∵ AC=BC,DC=EC, ∴
CDAC?CEBC.即tan∠DAC=tan∠EBC.
B F D ∴ ∠DAC=∠EBC.(下略)…………………3分 (2)AF⊥BE. …………………………………6分 ∵ ∠ABC=∠DEC=30°,∠ACB=∠DCE=90°, ∴ BC?EC=tan60°. ……………………7分
ACDC∴ △DCA∽△ECB. …………………………8分 ∴ ∠DAC=∠EBC. …………………………9分 ∵ ∠ADC=∠BDF,
∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.
E
C
A
∴ ∠BFD=90°. ∴ AF⊥BE. ……………………………………………………………………10分 5. 解:⑴证明:∵AC平分∠MAN,∠MAN=120°, ∴∠CAB=∠CAD=60°, ∵∠ABC=∠ADC=90°,
∴∠ACB=∠ACD=30°,????1分 ∴AB=AD=
12MCAC,????????2分
E DAF BG N∴AB+AD=AC。????????3分 ⑵成立。???????????r?4分
证法一:如图,过点C分别作AM、AN的垂线,垂足分别为E、F。 ∵AC平分∠MAN,∴CE=CF.
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠CDE=∠ABC,????????????????????????5分 ∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,????????6分 ∴AB+AD=AF+BF+AE-ED=AF+AE,由⑴知AF+AE=AC,
∴AB+AD=AC??????????????????????????7分 证法二:如图,在AN上截取AG=AC,连接CG.
∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,????5分 ∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,
∴∠CBG=∠ADC,∴△CBG≌△CDA,??????????????6分 ∴BG=AD,
∴AB+AD=AB+BG=AG=AC,????????????????7分 ⑶①3;???????????????????????????8分 ②2cos?2.???????????????????????????9分
证明:由⑵知,ED=BF,AE=AF, 在Rt△AFC中,cos?CAF?AFAC,即cos?2?AFAC,
新课标第一网----免费课件、教案、试题下载
新课标第一网(www.xkb1.com)--中小学教学资源共享平台
∴AF?ACcos?2,????????????????????????10分
?∴AB+AD=AF+BF+AE-ED=AF+AE=2AF?ACcos26. 解:(1)证明:?BM?NC,?ABM??BCN,AB?BC,
,????11分
?△ABM≌△BCN, ??BAM??CBN,
??BQM??BAQ??ABQ??MBQ??ABQ?60.
?(2)①是;②是;③否. ②的证明:如图,
??ACM??BAN?120,CM?AN,AC?AB, ?△ACM≌△BAN, ??AMC??BNA,
?Q N A
B
?????NQA??NBC??BMQ??NBC??BNA?180?60?120, ??BQM?60.
?C M
(第②题图)
③的证明:如图,
?BM?CN,AB?BC, ?Rt△ABM≌Rt△BCN,
??AMB??BNC.又?NBM??BNC?90,
?A D N
Q ??QBM??QMB?90,
??BQM?90,即?BQM?60.
???B
M C
(第③题图)
7. (Ⅰ)证明 将△ACM沿直线CE对折,得△DCM,连DN,
CM则△DCM≌△A. ··························································································· 1分
C 有CD?CA,DM?AM,?DCM??ACM,?CDM??A. 又由CA?CB,得 CD?CB. ········································ 2分 由?DCN??ECF??DCM?45???DCM,
?BCN??ACB??ECF??ACM ,
A
?90??45???ACM?45???ACMM E
N
D F
B
得?DCN??BCN. ··································································································· 3分 又CN?CN,
DN∴△CBN≌△C. ······························································································ 4分
有DN?BN,?CDN??B.
∴?MDN??CDM??CDN??A??B?90?. ····························································· 5分 ∴在Rt△MDN中,由勾股定理,
新课标第一网----免费课件、教案、试题下载
新课标第一网(www.xkb1.com)--中小学教学资源共享平台
得MN2?DM2?DN22.即MN22?AM2?BN2. ························································ 6分
(Ⅱ)关系式MN?AM?BN2仍然成立. ····························································· 7分
C 证明 将△ACM沿直线CE对折,得△GCM,连GN, 则△GCM≌△ACM. ······················································ 8分
G E M
A N F
B
有CG?CA,GM?AM,
?GCM??ACM,?CGM??CAM.
又由CA?CB,得 CG?CB.
由?GCN??GCM??ECF??GCM?45?,
?BCN??ACB??ACN?90??(?ECF??ACM)?45???ACM.
得?GCN??BCN. ······························································································· 9分 又CN?CN,
GN∴△CBN≌△C.
有GN?BN,?CGN??B?45?,?CGM??CAM?180???CAB?135?, ∴?MGN??CGM??CGN?135??45??90?. ∴在Rt△MGN中,由勾股定理, 得MN2?GM2?GN2.即MN2?AM2?BN2.·························································10分
8. 证明:(1)①??BAC??DAE
??BAE??CAD ?AB?AC,AD?AE
?△ABE≌△ACD ?BE?CD ················································································································· 3分
②由△ABE≌△ACD得?ABE??ACD,BE?CD
?M,N分别是BE,CD的中点,?BM?CN························································· 4分
又?AB?AC
?△ABM≌△ACN
?AM?AN,即△AMN为等腰三角形 ····································································· 6分
(2)(1)中的两个结论仍然成立.············································································· 8分 (3)在图②中正确画出线段PD 由(1)同理可证△ABM≌△ACN
??CAN??BAM ??BAC??MAN
又??BAC??DAE
??MAN??DAE??BAC
?△AMN,△ADE和△ABC都是顶角相等的等腰三角形········································10分 ??PBD??AMN,?PDB??ADE??ANM ?△PBD∽△AMN 12分
新课标第一网----免费课件、教案、试题下载
新课标第一网(www.xkb1.com)--中小学教学资源共享平台
9. 证明:? AC∥DE, BC∥EF??CAB??EDF,?ABC??DFE?AC=DE??ABC??DFE, ∴AB=DF ∴AF=BD 10. 证明:?AC∥DE,
??ACD??D,?BCA??E.、)
,又
又??ACD??B,
??B??D.
又?AC?CE,
?△ABC≌△CDE.
(6分
11.
解:(1)如图1; (2)如图2; (3)4. (8分)
2cm 40° 1cm 图1
40° 1cm 图2
2cm
12.证明:(1)在△ABC和△ADC中 ??1??2??AC?AC ??3??4??△ABC≌△ADC.
(2)?△ABC≌△ADC,?AB?AD.又??1??2,?BO?DO.
13. 证明: ?四边形ABCD和四边形DEFG都是正方形
?AD?CD,DE?DG,?ADC??EDG?90,
? ??ADE??CDG,?△ADE≌△CDG,?AE?CG
14. 证明:(1)?CF平分?BCD,??BCF??DCF.
在△BFC和△DFC中, ?BC?DC,? ??BCF??DCF,?FC?FC.??△BFC≌△DFC.
新课标第一网----免费课件、教案、试题下载
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2010中考数学专题复习——全等三角形(4)在线全文阅读。
相关推荐: