19.在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连接BD,F为BD中点. (1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1. 设CF=kEF,则k= _________ ; (2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE﹣DE=2CF;
(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.
20.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.
(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);
(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积): ①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是 _________ ; ②如图4,当四边形ABCD没有等高点时,你得到的一个结论是 _________ .
21.已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax﹣bx+kc(c≠0)的图象与x轴一个交点的横坐标为1. (1)若方程①的根为正整数,求整数k的值; (2)求代数式
的值;
2
2
(3)求证:关于x的一元二次方程ax﹣bx+c=0 ②必有两个不相等的实数根.
22.已知抛物线经过点A(0,4)、B(1,4)、C(3,2),与x轴正半轴交于点D. (1)求此抛物线的解析式及点D的坐标; (2)在x轴上求一点E,使得△BCE是以BC为底边的等腰三角形; (3)在(2)的条件下,过线段ED上动点P作直线PF∥BC,与BE、CE分别交于点F、G,将△EFG沿FG翻折得到△E′FG.设P(x,0),△E′FG与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x的取值范围.
23.已知二次函数y=ax+bx+c的图象分别经过点(0,3),(3,0),(﹣2,﹣5).求: (1)求这个二次函数的解析式; (2)求这个二次函数的最值;
(3)若设这个二次函数图象与x轴交于点C,D(点C在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ACB是等腰三角形,求出点B的坐标.
24.根据所给的图形解答下列问题: (1)如图1,△ABC中,AB=AC,∠BAC=90°,AD⊥BC于D,把△ABD绕点A旋转,并拼接成一个与△ABC面积相等的正方形,请你在图中完成这个作图; (2)如图2,△ABC中,AB=AC,∠BAC=90°,请你设计一种与(1)不同的方法,将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得到的正方形;
(3)设计一种方法把图3中的矩形ABCD拆分并拼接为一个与其面积相等的正方形,请你依据此矩形画出正形,并根据你所画的图形,证明正方形面积等于矩形ABCD的面积的结论.
2
25.例.如图①,平面直角坐标系xOy中有点B(2,3)和C(5,4),求△OBC的面积. 解:过点B作BD⊥x轴于D,过点C作CE⊥x轴于E.依题意,可得 S△OBC=S梯形BDEC+S△OBD﹣S△OCE =
=×(3+4)×(5﹣2)+×2×3﹣×5×4=3.5.
∴△OBC的面积为3.5. (1)如图②,若B(x1,y1)、C(x2,y2)均为第一象限的点,O、B、C三点不在同一条直线上.仿照例题的解法,求△OBC的面积(用含x1、x2、y1、y2的代数式表示); (2)如图③,若三个点的坐标分别为A(2,5),B(7,7),C(9,1),求四边形OABC的面积.
26.阅读: ①按照某种规律移动一个平面图形的所有点,得到一个新图形称为原图形的像.如果原图形每一个点只对应像的一个点,且像的每一个点也只对应原图形的一个点,这样的运动称为几何变换.特别地,当新图形与原图形的形状大小都不改变时,我们称这样的几何变换为正交变换.
问题1:我们学习过的平移、 _________ 、 _________ 变换都是正交变换. ②如果一个图形绕着一个点(旋转中心)旋转n° (0<n≤360)后,像又回到原图形占据的空间(重合),则称该变换为该图形的 n度旋转变换.特别地,具有180?旋转变换的图形称为中心对称图形. 例如,图A中奔驰车标示意图具有120°,240°,360°的旋转变换.
图B的几何图形具有180°的旋转变换,所以它是中心对称图形.
问题2:图C和图D中的两个几何图形具有n度旋转变换,请分别写出n的最小值. 答:(图C) _________ ; 答:(图D) _________ .
问题3:如果将图C和图D的旋转中心重合,组合成一个新的平面图形,它具有n度旋转变换,则n的最小值为 _________ .
问题4:请你在图E中画出一个具有180°旋转变换的正多边形.(要求以O为旋转中心,顶点在直线与圆的交点上) 27.已知:点P为线段AB上的动点(与A、B两点不重合).在同一平面内,把线段AP、BP分别折成△CDP、△EFP,其中∠CDP=∠EFP=90°,且D、P、F三点共线,如图所示. (1)若△CDP、△EFP均为等腰三角形,且DF=2,求AB的长; (2)若AB=12,tan∠C=,且以C、D、P为顶点的三角形和以E、F、P为顶点的三角形相似,求四边形CDFE的面积的最小值.
28.在平面直角坐标系xOy中,已知直线y=﹣
x+
交x轴于点C,交y轴于点A.等腰直角三角板OBD的
顶点D与点C重合,如图A所示.把三角板绕着点O顺时针旋转,旋转角度为α(0°<α<180°),使B点恰好落在AC上的B'处,如图B所示. (1)求图A中的点B的坐标; (2)求α的值;
2
(3)若二次函数y=mx+3x的图象经过(1)中的点B,判断点B′是否在这条抛物线上,并说明理由.
29.已知:如图,AC是⊙O的直径,AB是弦,MN是过点A的直线,AB等于半径长. (1)若∠BAC=2∠BAN,求证:MN是⊙O的切线. (2)在(1)成立的条件下,当点E是等边三角形.
的中点时,在AN上截取AD=AB,连接BD、BE、DE,求证:△BED是
30.在一个夹角为120°的墙角放置了一个圆形的容器,俯视图如图,在俯视图中圆与两边的墙分别切于B、C两点.如果用带刻度的直尺测量圆形容器的直径,发现直尺的长度不够. (1)写出此图中相等的线段.
(2)请你设计一种可以通过计算求出直径的测量方法.(写出主要解题过程)
2012年初中难题数学组卷
参考答案与试题解析
一.填空题(共2小题)
1.如图,矩形纸片ABCD中,AB=,BC=.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法折叠,第n次折叠后的折痕与BD交于点On,则BO1= 2 ,BOn= .
考点: 翻折变换(折叠问题);矩形的性质。 专题: 规律型。 分析: (1)结合图形和已知条件,可以推出BD的长度,根据轴对称的性质,即可得出O1点为BD的中点,很容易就可推出O1B=2; (2)依据第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2,O1D的中点为D1,可以推出O2D1=BO2==;以此类推,即可推出:BOn=. 解答: 解:∵矩形纸片ABCD中,, ∴BD=4, (1)当n=1时, ∵第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1, ∴O1D=O1B=2, ∴BO1=2=; (2)当n=2时, ∵第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2,O1D的中点为D1, ∴O2D1=BO2===, ∵设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库人教版初中数学中考经典好题难题(有答案)(2)在线全文阅读。
相关推荐: