小步长能得到解决,但是需要花费更长时间。因为种种问题,这个方法使用较少。
[图8]势能面上最缓上升法所走的路径(黑色粗曲线)
2.3.2 本征向量/本征值跟踪法(eigenvector/eigenvalue following,EF。也称mode walking/mode following/Walking up valleys)
由于平衡结构越过势垒发生反应的能量主要来自分子某振动模式提供的动能,考虑这一点,由平衡结构沿着此振动矢量方向步进,能够找到过渡态,经历的路径就是反应路径。这种方法需要首先对平衡结构进行振动分析,由用户最初指定一个可能指向过渡态的振动模式。因为平衡态通向过渡态路径势能面平缓,曲率(可视为振子力常数)一般小于其它方向,故一般跟踪频率最低的振动模式(高斯中默认)。每走一步后重新计算Hessian矩阵的本征值和本征向量,如果跟踪的是本征值最低的模式,仍取本征值最小的本征向量继续跟踪;如果跟踪的是其它振动模式,就取与上一步所跟踪的向量重叠最大的向量继续跟踪。重复执行,直到符合收敛标准为止。
如果一个结构涉及到多个过渡态,则跟踪不同的本征向量有可能得到不同的过渡态,即便所跟踪的不是最低模式,当接近过渡态后也会成为最低的模式。此方法也可以直接由过渡态初猜结构开始跟踪,或者说EF方法是一种不需要初猜在过渡态二次区域内的寻找过渡态的方法。由稳定结构通过EF方法跟踪至过渡态相对与直接给出初猜显然更为费时,但对于不能预测过渡态结构的情况下往往是有用的。LMOD法搜索构象也是基于这一原理,不断地根据低频振动方向越过构象转变的过渡态到达新的构象。
最初的EF方法只是简单地沿所跟踪的振动模式移动来升高能量。高斯中opt=(EF,TS)方法还使结构同时在其余方向上沿能量更低的方向移动,其实它用的就已介绍的P-RFO法,所跟踪的模式用独立计算的λ的最大解,其它的模式使用相同的另外计算的λ的最小解。由于Berny方法寻找过渡态已经包含了P-RFO步,所以EF方法实际上也已经包含在内了,除非要用到跟踪特定模式等功能时才有使用的必要。
2.3.3 ARTn(activation-relaxation technique nouveau)
此方法主要用于研究无序材料的在能量面上由极小点穿过过渡态到达其它极小点的过程,解决由于势垒高而难以用MD和MC方法研究的问题。方法分两步,(1)将初始结构由极小点位置激活并收敛到过渡态(activation步),(2)由过渡态通过常规的能量极小化算法寻找极小点(relaxation步)。(1)中的每一步中在任意方向上移动结构,然后在垂直于走过的路径方向的超平面上做能量极小化,反复执行,直到Hessian矩阵出现一个负本征值为止。之后进入收敛至鞍点的步骤,在最小本征值的方向上沿受力反方向移动,其余方向根据受力移动,最终将找到一阶鞍点。由于大体系Hessian矩阵本征值求解困难,此方法中使用Lanczos算法快速求解最低本征值和本征向量。ART法可以获得与初始极小点相连的许多过渡态。
2.3.4 梯度极值法(Gradient extremal,GE)
梯度极值路径连接的是每一个等值线(高维情况为超曲面)上的梯度的模|g|为极大或极小值的点(相对于同一等值线上的其它点的梯度模来说)。因为势能面的每一点的梯度垂直于此点等值线的切线,故梯度模极值点的位置相当于垂直于等值线方向上等值线间隔比处在相同等值线上相邻的点更远或更近。|g|的极值与g^2一致,设势能函数为f,限制所在等值线能量为k,通过拉格朗日乘子法求g^2的极值▽[g^2-2λ(f-k)]=0,可知梯度极值点的梯度方向等于此点Hessian矩阵某一本征向量。由于势能面上每个驻点必有一条或多条梯度极值路径通过而互相构成网络(但任意驻点间不一定有梯度极值路径直接相连),所以系统地跟踪梯度极值路径是一种获得势能面上全部驻点的方法,目前已有几种跟踪算法,然而即便对于简单体系,梯度极值路径数目也极多,尤其是包含对称性情况下。由极小点跟踪梯度极值路径也能够用于寻找过渡态,但极小点未必与过渡态通过梯度极值路径直连,且此方法并不能控制要寻找哪类驻点,故为了寻找过渡态可
能需要从多个其它驻点跟踪多个梯度极值路径,计算量很大,所以单纯为了寻找过渡态而使用这种方法不切实际。
[图9]梯度极值路径示意图
2.3.5 约化梯度跟踪(reduced gradient following,RGF)
这个方法同梯度极值法一样可以得到包括过渡态、极小点在内的各种驻点。设势能面为N维,此方法将跟踪N条路径,其中第i条(i=1,2,3...N)路径只有在第i维上梯度不为0,而其它N-1个维度上皆为0,故称为约化梯度。这样的路径交汇的位置,就是所有维度上梯度皆为0的位置,即驻点。例如简单的二维情况E(x,y)=x^3+y^3-6xy,跟踪的RGF方程就是Ex(x,y)=3x^2-6y=0和Ey(x,y)=3y^2-6x=0,前者仅y方向梯度不为0,后者仅x方向梯度不为0,相交得到的驻点为一个一阶鞍点和一个极小点。也可以使用原始坐标组合的正交坐标系,例如跟踪仅x+y和仅x-y方向上梯度不为0的两条路径。
[图10]x^3+y^3-6xy面上约化梯度路径示意图
跟踪约化梯度的步进算法是第m点的坐标x(m+1)=x(m)+StL*x'(m)/|x'(m)|。StL是步长,x'(m)/|x'(m)|代表路径切线方向单位向量。x'可以通过H'x'=0方程以QR分解法获得,其中H'与Hessian矩阵唯一不同的是,若当前跟踪的是仅第k维梯度不为0的约化梯度路径,则H'没有Hessian矩阵的第k行。一般起始步由某驻点开始,此步准确计算Hessian,步进过程中Hessian可用前述的DFP方法修正。每步检验所跟踪方向上的朝向下一个驻点的牛顿步步长,若小于标准则停止,并且再精确计算一次Hessian以确认此驻点是什么类型。每次走步的结果如果在数值上与“仅某维度上梯度为0”条件符合较好,可以动态增加步长,类似AH法的置信半径概念,如果相差较大,则调用校正步(后期方法将校正步合并入步进步,改善了效率和稳定性)。
这个方法计算量也很大,而且也无法指定要搜索的驻点的类型,所以不适合独立用作寻找过渡态。
2.3.6 等势面搜索法(Isopotenial Searching)
如果将反应物位置附近的势能面比做一个湖,这个方法可以看作逐渐往湖里面灌水,由于过渡态能量比周围地方更低,所以随着水位(势能)逐渐升高,水最先流出来的地方就是过渡态。继续灌水,随着水位继续升高,还可以找到其它能量更高的过渡态。
具体实现的方法是:首先最小化反应物的能量E0,在反应物位置附近设置一些测试点,可以随机也可以根
据经验设定,作为“水位”来检测是否已到达过渡态能量。然后设定目标能量E(target),一般高于E0几百KJ/mol。计算那些测试点的能量和势能梯度,检查其能量与E(target)的差的绝对值,若大于10KJ/mol,即没达到目标水位,就让它们沿着梯度方向行进以提升能量,之后再次检查是否符合条件,直到小于10KJ/mol,即已到达目标水位,就对这些点进行人工的检查,包括结构、成键分析等,考察在E(target)时是否已经达到或超过了过渡态的能量。如果找到了过渡态,就调整这些点的位置继续找别的过渡态;如果未找到,就提高E(target)并且调测试点整位置以增大找到过渡态的概率,然后再沿着梯度方向提升测试点的能量并进行接下来的检测,反复如此。
上述提到的“调整点的位置”有很多算法,但主要都是使那些测试点在垂直于梯度,即在等值面上移动。因为测试点无法密集覆盖整个等势面,受计算能力制约其数目有限的,很难有哪个点随着E(target)的提升而移动后恰好落在过渡态的位置。直到E(target)提升到有测试点可判断为过渡态时,其能量一般已高出实际过渡态很多。所以使用此方法得到的过渡态能量与初始点位置和调整点位置的算法都有很大关系,一般都显著偏高,甚至不能找到过渡态,可尝试以不同初始位置和调整算法重新执行以改善结果。等势面搜索法适合在只有反应物结构而难以预测过渡态和产物结构的情况下寻找过渡态,例如预测质谱中分子的可能裂解的方式,有时还可能找到全新未曾考虑到的反应机理。但是此方法的结果很粗糙,而且计算量极大,尤其是大分子的高维势能面,有限的测试点很容易漏掉许多重要过渡态。
2.3.7 球形优化(Sphere optimization)
在几何参数的变量空间上,以反应物或产物为中心,在不断增加半径的超球面上做能量最小化。将相邻球面上得到的能量极小点相连接,就得到一条由反应物或产物为起点的低能量的路径,可做为IRC(未必正确,考虑图8的势能面),并由此找到过渡态。如果每个球面上可以找到多个极小点,则连接后有可能得到多条反应路径。此法若以坐标驱动法为类比,此方法就是对几何参数空间中反应物或产物结构代表的点的距离进行柔性扫描。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库过渡态(5)在线全文阅读。
相关推荐: