为关闭此功能(相当于用了NoTrustUpdate),可以使用trustupdate关键字来打开这个功能。
2.1.3 GDIIS法(Geometry Direct Inversion in the Iterative Subspace)
GDIIS与DIIS原理一致,但用于几何优化,这个方法趋于收敛到离初始位置最近的驻点,包括过渡态。下一步坐标X(new)=X\,H'代表当前步的Hessian逆矩阵,可见公式形式与NR法是一致的,但是X\与g\不再指当前步的坐标和梯度,而是由之前走过的点的坐标X(k)和梯度g(k)插值得到的,X\,g\,代入上式即X(new)=∑c(i)(X(i)-H'g(i)),其中∑是对之前全部走过的点加和。系数c(k)通过使误差向量r的模最小化得到,r=∑c(k)e(k),并以∑c(k)=1为限制条件。e(k)常见有两种定义,一种是e(k)=-H'g(k),另一种更常用,是e(k)=g(k),可看出GDIIS利用的是已经搜索过的子空间中坐标与梯度的相关性,目的是估出梯度(即误差向量)的模尽可能小的坐标,这一点与后述的梯度模方法相似。
此方法缺点是由于势能面复杂,步进中容易被拉到已经过的势能面的其它驻点而不能到达指定类型驻点,还容易走到类似肩膀形状的拐点,梯度虽小却不为0,由于不能达到收敛标准而反复在此处震荡。另外随优化步数增加,误差向量数目逐渐加大,会逐渐出现的误差向量之间的线性相关,导致伪收敛和数值不稳定问题。在改进的方法中将GDIIS与更可靠的RFO方法结合,比较二者的步进方向和长度,并检验GDIIS中的组合系数c,根据一定规则来决定每一步对之前走过的点的保留方式,必要时全部舍去而重新开始GDIIS。Gaussian中用的这种改进的GDIIS方法解决了上述问题同时提高了效率,速度等于或优于RFO方法,尤其是以低水平对势能面平坦的大体系优化时更为突出。GDIIS计算量小,对Hessian矩阵很不敏感,可以在优化中不更新,也可以用QN法更新来改善性能。此方法自Gaussian98起就是默认的半经验优化算法,其它方法下也可以用OPT的gdiis关键词打开。
2.1.4 梯度模优化(gradient norm minimization)
势能面上的驻点,包括能量极小点、过渡态和高阶鞍点的势能梯度都为0,所以在相应于势能面的梯度模面上进行优化找到数值为0的点,经过Hessian矩阵本征值符号的检验,就能得到过渡态。这相当于把搜索过渡态问题转化为了能量极小化问题,就有了更可靠的算法可用。(注:梯度模指的是势能梯度在各个维度分量平方和的平方根,即梯度大小的绝对值)。但是寻找数值更小点的优化方法比如最陡下降法只能找到离初始位置最近的极小点,若找到的梯度模面上的极小点数值大于0则是势能面肩膀形拐点,没有什么用处,而这样的点收敛半径往往很大,例如图中在x=2至8的区域内都会收敛到函数拐点,只有提供的初猜结构在x=1和9附近很小的范围内才会收敛到过渡态,收敛半径太小,难以提供合理初猜。梯度模面上还多出一些极大点,如x=1.5处,若使用收敛更快的NR法找极小点还容易收敛到这样没有意义的点上。
基于这些原因,梯度模法很少使用。
[图1]原函数与它的梯度模曲线。
2.1.5 Dimer方法
Dimer方法是一种高效的定位过渡态的方法。这个方法定义了由两个点R1和R2组成的一个Dimer,能量和所受势能力(由原始的势能面梯度造成受力,下同)分别为E1和E2、F1和F2。两个点间距为2ΔR,ΔR为定值。这两点的中间点为R,其受力F(R)=(F1+F2)/2。Dimer的总能量为E=(E1+E2)/2。这个方法的每一步包括平移Dimer和旋转Dimer两步。
旋转Dimer:保持R1、R2中点位置R不变作为轴,旋转Dimer直到总能量E最小。通过推导可知在旋转过程中,E与R点在dimer方向(R1-R2方向)上的曲率关系C是线性的,即最小化E的过程就是最小化C的过程。所以每一步的Dimer方向都是曲率最小方向,当最终R收敛到过渡态位置时,Dimer就会平行于虚频方向。
平移Dimer:Dimer根据受力F'移动R的位置,结合不同方法有具体步进方式,如quick-win、共轭梯度法。当C<0(过渡态或高阶鞍点的二次区域内),F'等于将F(R)平行于Dimer方向力的分量符号反转;当C>0(极小点二次区域内),F'等于F(R)平行于Dimer方向力的分量的负值,而没有垂直于Dimer方向的力,促使Dimer尽快离开这个区域。由于Dimer的方向就是曲率最小的方向,在过渡态二次区域内就是指虚频方向,在Dimer方法中F'的定义使这个方向以受力相反方向移动以升高能量,而其它方向顺着受力方向移
动来最小化能量,可看出原理上与NR法相似。费时的计算Hessian矩阵最小本征值以确定提升能量方向的过程被旋转Dimer这一步代替了,仅需要计算一阶导数。Dimer法对初始位置要求很宽松,并不需要在过渡态二次区域内,若在极小点二次区域内就类似于后述的EF方法沿着最小振动模式爬坡。如果在高阶鞍点二次区域内,只在曲率最负的虚频方向沿着受力反向移动,在其它虚频方向上仍最小化能量,而不会像NR法收敛到高阶鞍点。
[图2]右侧为Dimer法在Müller-Brown模型势上面搜索两个过渡态过程中Dimer走的路径。
势能面上往往有许多鞍点,Dimer方法还可以做鞍点搜索。通过分子动力学方法给予Dimer一定动能,使之能够在势能面上广阔的区域内运动,根据一定标准提取轨迹中的一些点作为初猜,再执行标准Dimer方法就可以得到许多不同的鞍点。Dimer方法很适合双处理器并行,两个点的受力分别由两个处理器负责,速度可增加将近一倍。
2.2基于反应物与产物结构的算法
2.2.1 同步转变方法(synchronous transit,ST)
提供合理的初猜结构往往不易,ST方法可以只根据反应物和产物结构自动得到过渡态结构。“同步转变”这个名字强调的是反应路径上所有坐标一起变化,这是相对于后面提到的赝坐标法来说的(即只变化指定的坐标,尽管其它坐标优化后坐标也会变化)。
ST分为两种模型,最简单的就是LST模型(Linear synchronous transit,线性同步转变),这个方法假设反应过
程中,反应物结构的每个坐标都是同步、线性地变化到产物结构。如果反应物、产物的坐标分别以向量A、B表示,则反应过程中的结构坐标可表示为(1-x)*A+x*B,x由0逐渐变到1代表反应进度。注意LST并不是指反应中原子在真实空间上以直线运动,只有笛卡尔坐标下的LST才是如此,在内坐标下的LST,原子在真实空间中一般以弧线运动。以LST的假设,反应路径在其所用坐标下的势能面图上可描述为一条直线,LST给出的过渡态就是这条直线上能量最高点(图3的点1)。LST的问题也很显著,其假设的坐标线性变化多数是错误的,绘制在势能面图上也多数不会是直线,故给出的过渡态也有较大偏差,容易带两个或多个虚频。
比LST更合理的是QST(quadratic synchronous transit,二次同步转变),它假设反应路径在势能面上是一条二次曲线。QST在LST得到的过渡态位置上,对LST直线路径的垂直方向进行线搜索找到能量极小点A(图3的点2)。QST给出的反应路径可以用经过反应物、A、产物的二次曲线来表示,如果这条路径上能量最大点的位置恰为A,则A就是QST方法给出的过渡态;如果不是,则以最大点作为过渡态。若想结果更精确,可以再对这个最大点向垂直于路径的方向优化,再次得到A并检验,反复重复这个步骤,逐步找到能量更低、更准确的过渡态。
QST方法在计算能力较低的年代曾是简单快速的获得过渡态和反应路径的方法,然而如今看来其结果是相当粗糙的,已极少单独使用,可以将其得到的过渡态作为AH法的初猜。
[图3]LST与QST方法示意图
2.2.2 STQN方法(Combined Synchronous Transit and Quasi-Newton Methods)
STQN是ST与QN方法的结合(更准确地说是与EF法的结合)。但不要简单认为是按顺序独立执行这两步,即认为“先利用反应物和产物结构以ST方法得到粗糙过渡态,再以之作为初猜用QN法精确寻找过渡态”是错误的。STQN方法大意是:使结构从低能量的反应物出发,以ST路径在当前位置切线为引导,沿着LST或QST假设的反应路径行进(爬坡步),目的是使结构到达假设路径的能量最高处附近(真实过渡态二次区域附近)。当符合一定判据时就转换为QN法寻找精确过渡态位置(EF步)。下面介绍具体步骤。
先说明后面用到的切线的定义:STQN当中的LST路径与前面ST部分介绍的LST路径无异,都是直线,切线T在优化中是不变的,就是反应物R指向产物P的单位向量。STQN方法中的QST路径定义与ST方法介绍的不同,走的不是二次曲线而是圆形的一段弧,如图4所示。这个圆弧经过R、P以及优化中的当前步位置X,切线就是圆在X处的单位切线向量,圆弧和切线在每一步都是变化的。虽然QST路径比LST更为合理,但对于QSTN方法,QST路径在收敛速度和成功机率上的优势并不显著。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库过渡态(3)在线全文阅读。
相关推荐: