物理化学上册习题解(天津大学第五版)
△U = △H + △(pV)=△H + V△p
= { 16274 + 20×103×(101.325-47.343)×10-3}J = 15195 J = 15.20 kJ 因密闭恒容,W = 0,Q = △U = 15.20 kJ
298.15298.15???S1??1.6775?75.75?ln?0.3225?33.76?lnJ?K?1 ?353.15353.15?? = (-21.513 – 1.843)J·K-1 = -23.356 J·K-1
)?44106??(1.6775?1.3468?1?1?S2???J?K?48.921J?K
298.15??373.15373.15???S3??1.3468?75.75?ln?0.6532?33.76?lnJ?K?1 ?298.15298.15?? = (22.892 + 4.948 )J·K-1 = 27.840 J·K-1 △S = △S1 + △S2 + △S3 = 53.405 J·K-1
?Cp,mCp,mSm(T)T 3-31 解: ds?ds??dT dT , ??Sm(298.15K)298.15KTT将O2(g)的摩尔定压热容与温度的函数关系代入上式积分,整理得
??Sm(T)?Sm(298.15K)?{28.17?lnT?6.297?10?3(T?298.15K)298.15K
1 ??0.7494?10?6[(T/K)3?(298.15K/K)3]}J?mol?1?K?12?Sm(373.15K)?{205.138?6.3209?0.4723?9.5377}J?K?1?202.394J?K?1
这是标准摩尔熵。为求氧气在100℃,50 kPa下的摩尔规定熵值Sm,设计如下途径:
1mol O2(g)1mol O2(g)?S373.15K,p??100kPa???373.15K,p?50kPa
?Sm(373.15K)Sm(373.15K)? ?S??nRln(p2/p1)?Sm?Sm??Sm?Sm??S?Sm?nRln(p2/p1)50 ?(202.394?1?8.3145?ln)J?K?1?208.157J?K?1100
假如忽略三次方项,则
?Sm(373.15K)?{205.138?6.3209?0.4723}J?K?1?211.932J?K?1 ??Sm?Sm??S?Sm?nRln(p2/p1)50 ?(211.932?1?8.3145?ln)J?K?1?217.695J?K?1100?B 结果与答案一样。
? 3-32 解:对于化学反应0???BB, d?rSm/dT??Cp,m/T (3.6.7b) 在温度区间T1至T2内,若所有反应物及产物均不发生相变化,反应物和产物的标准定压摩尔热容随温度的关系式均为 Cp,m?a?bT?cT 令 ?a??2??BBaB,?b???BbB,?c???BcB,则有
BB36
物理化学上册习题解(天津大学第五版)
2?rC?p,m??a??bT??cT
代入式子(3.6.7b),则可得不定积分式
???rSm(T)??rSm,0??alnT??bT?1?cT2 2?式中?rSm,0为积分常数,将某一温度下的标准摩尔反应熵代入即可求得。
3-33解:过程为
1mol H2O(l)1mol H2O(g)?G298.15K,p??100kPa???298.15K,p?100kPa
???fGm(H2O(l),298.15K)?fGm(H2O(g),298.15K)
△G1 △G3
1mol H2O(l)1mol H2O(g)?G2 ????298.15K,p?3.1663kPa298.15K,p?3.1663kPa???G??G1??G2??G3??fGm(H2O,g,298.15K)??fGm(H2O,l,298.15K)
△G1=Vl△p ={(18÷1000)×10-3×(3.1663-100)×103}J = - 1.743 J; △G2 =0; △G3 =
?p2p1Vdp?nRTln(p2/p1)
={1×8.3145×298.15×ln(100/3.1663)J = 8558.9 J =8.559 kJ
???fGm(H2O,g,298.15K)??G1??G2??G3??fGm(H2O,l,298.15K)
= (-0.0017+8.559 - 237.129)kJ·mol-1= - 228.572 kJ·mol-1
3-34 解:见书本例3.5.2 (p122)。本题虽然系统的压力为120kPa,大于水在100℃时的饱和蒸气压,但因有N2(g)存在,在气相中水蒸气的分压小于其饱和蒸气压时,水即可蒸发。本题的水量较多,水是全部蒸发,还是部分蒸发,我们先计算为好。
先求水的蒸发量。水在100℃时的饱和蒸气压为ps=101.325kPa,末态N2(g)的分压p2 (N2,g)=p – p(H2O)= 18.675 kPa。N2(g)的物质的量为2 mol,据分压定律,求得水蒸气的物质的量为
n(H2O,g)?[p(H2O,g)/p(N2)]?n(N2) ?(101.325/18.675)?2mol?5.426mol可见,3mol的水全部蒸发成水蒸气。
因 △H(N2,g)=0,△H(H2O,g)=3×△vapHm=3×40.668kJ =122.004 kJ
?H?122.004kJ?Qp
W = - p△V= - {△n(g)RT} = - n(H2O,g)RT={ - 3×8.3145×373.15}J = - 9.308 kJ △U = Q + W = 122.004 kJ - 9.308 kJ = 112.696 kJ
?S(H2O)??H/T?(122.004?103/373.15)J?K?1?326.957J?K?1?S(N2)?n2Rln(p1,N2/p2,N2)??2?8.314ln(120/18.675)?J?K?1?1?30.933J?K
△S= △S(H2O)+ △S(N2)=357.89 J·K-1 △A = △U - T△S = 112696 J – 373.15×357.89 J = -20850 J = - 20.850 kJ △G = △H - T△S = 122004 J – 373.15×357.89 J = -11543 J = - 11.543 kJ 3-35 已知100℃水的饱和蒸气压为101.325kPa,在此条件下水的摩尔蒸发焓△vapHm= 40.668
37
物理化学上册习题解(天津大学第五版)
kJ·mol-1。在臵于100℃恒温槽中的容积为100 dm3 的密闭容器中,有压力 120kPa的过饱和蒸气。此状态为亚稳态。今过饱和蒸气失稳,部分凝结成液态水达到热力学稳定的平衡态。求过程的Q,△U,△H,△S,△A及△G。
解:先计算容积为100 dm3 的密闭容器中水蒸气的物质的量:
120?103?100?10?3?始态:ng?p1V1????mol?3.8680mol ??RT1?8.3145?373.15?101.325?103?100?10?3?末态:ng?p2V2????mol?3.2659mol ??RT1?8.3145?373.15?可设计如下过程
3.8680mol H2O(g)3.2659mol H2O(g), 0.6021mol H2O(l)?H ???33120kPa, 100dm,373.15K101.325kPa, 100dm,373.15K
△H1 △H3
3.8680mol H2O(g)?H23.2659mol H2O(g), 0.6021mol H2O(l) ????101.325kPa, 373.15K101.325kPa, 373.15K△H1=△H3≈0 △H=△H3 =0.6021×(-40.668)kJ= - 24.486 kJ △U = △H - △(pV)≈△H - {△n(g)RT}
= {- 24.486 - (-0.6121)×8.3145×373.15×10-3} kJ = -22.618 kJ 恒容,W=0;△U = Q = - 22.618 kJ
?S?(?3.868?8.3145?ln(101.325/120)?24486/373.15)J?K?1
=(5.440 – 65.62)J·K-1 = - 60.180 J·K-1 △A = △U - T△S = {- 22618 – 373.15×(-60.180)} J = -162 J = - 0.162 kJ △G = △H - T△S = { -24486 – 373.15×(-60.180)} J = -2030 J = - 2.030 kJ 3-36 已知在 101.325 kPa下,水的沸点为100℃,其比蒸发焓△vaph = 2257.4 kJ·kg-1。已知液态水和水蒸气在100~120℃范围内的平均比定压热容分别为cp(H2O,l)= 4.224 kJ·kg-1·K-1及kg-1·K-1。 cp(H2O,g)= 2.033 kJ·
今有 101.325kPa下120℃的 1 kg过热水变成同样温度、压力下的水蒸气。设计可逆过程,并按可逆途径分别求过程的△S及△G。
解:途径设计如下
1kgH2O(l)1kgH2O(g)?S ???393.15K,101.325kPa393.15K,101.325kPa
△S1 △S3
1kgH2O(l)1kgH2O(g)S2 ????373.15K,101.325kPa373.15K,101.325kPa373.152257.4393.15???S??S1??S2??S3? ?1?4.244?ln??1?2.033?lnkJ?K?1 ?393.15373.15373.15??38
物理化学上册习题解(天津大学第五版)
= (-221.582 + 6049.578 + 106.144)J·K-1= 5934 J·K-1 ?H1?m?373.15K393.15KcpdT??1?4244?(373.15?393.15)?J??84880J
?H2= 2257400 J ?H3??1?2033?(393.15?373.15)?J?40660J
?H??H1??H2??H3= 2213180 J
△G=△H -T△S =2213180 – 393.15×5934 )J= - 119772 J = - 119.772 kJ
3-37 已知在100kPa下水的凝固点为 0 ℃,在 – 5℃,过冷水的比凝固焓?slh= -322.4 J·g-1,过冷水和冰的饱和蒸气压分别为ps(H2O,l)=0.422 kPa,今在100 kPa下,有 -5℃ ps(H2O,s)=0.414 kPa。1kg的过冷水变成同样温度、同样压力下的冰,设计可逆途径,分别按可逆途径计算过程的△S及△G。 解:途径设计如下
1kgH2O(l)1kgH2O(s)?S ???268.15.15K,100kPa268.15K,100kPa △S1 △S5
1kgH2O(l)1kgH2O(s) 268.15.15K,0.422kPa268.15K,0.414kPa △S2 △S4
1kgH2O(g)1kgH2O(g)S3 ????268.15.15K,0.422kPa268.15K,0.414kPa△S1≈0,△S5≈0, ?H??升华H??熔化H?H△S2 +△S4 =气化 ???凝固268.15K268.15K268.15K268.15K=?1000?(?322.4)?J·K-1 = - 1202.312 J·K-1 ??268.15??△S3 =nRTlnp1??1000?8.3145ln0.422?J?K?1?8.840J?K?1
p2?0.414??18?所以,△S = △S2 +△S4 +△S3 = - 1193.5 J·K-1= 1.194 k J·K-1
又因 △G2 = 0,△G4 =0,△G1 ≈ 0,△G5 ≈0,
p0.414??1000?G??G3?nRTln2???8.314?268.15?lnJ??2370J??2.370kJ ?p1?180.422?3-38 已知在 -5℃,水和冰的密度分别为?(H2O,l)=999.2 kg·m-3和?(H2O,s)=916.7 kg·m-3 。在在 -5℃,水和冰的相平衡压力为59.8 Mpa。 今有-5℃的 1kg水在 100kPa 下凝固成同样温度、压力下的冰,求过程的△G。假设水和冰的密度不随压力改变。
解:途径设计如下
1kgH2O(l)1kgH2O(s)?S ???268.15.15K,100kPa268.15K,100kPa △G1 △G3
39
物理化学上册习题解(天津大学第五版)
1kgH1kgH2O(l)2O(s)G2 ?????268.15.15K,59.80MPa268.15K,59.80MPa59.8MPa 因相平衡,△G2 = 0
?G??G1??G3?? ??100kPa59.8MPa100kPaV水dp??100kPa59.8MPaV冰dp(V冰?V水)dp?(V冰?V水)?(100?59800)?103Pa
??1?1? ????(100?59800)?103?J??5377J??5.377kJ????916.7999.2??3-39 若在某温度范围内,一液体及其蒸气的摩尔定压热容均可表示成
Cp,m?a?bT?cT2
的形式,则液体的摩尔蒸发焓为 ?vapHm??H0??aT?1?bT2?1?cT3
23其中△a= a(g)- a(l),△b = b(g)- b(l),△c = c(g)- c(l),△H0为积分常数。
试用克劳修斯-克拉佩龙方程的微分式,推导出该温度范围内液体饱和蒸气压p的对数 lnp与热力学温度T的函数关系式,积分常数为 I。
解:推导如下:
dlnp?vapHm?H0?a1?b?c
?????TdTRT2R3RRT2RT2??H0?a1?b?c?
dlnp?????T?dT2RT2R3RRT??对上式作不定积分得
??H0?a?b?c2lnp??lnT?T?T?I
RTR2R6R3-40 化学反应如下: CH4(g)?CO2(g) 2CO(g)?2H2(g)
????(1)利用附录中各物质的Sm,?fHm数据,求上述反应在25℃时的?rSm,?rGm;
??(2)利用附录中各物质的?fGm数据,计算上述反应在25℃时的?rGm;
(3)25℃,若始态CH4(g)和CO2(g)的分压均为150kPa,末态CO(g)和H2(g)的分压均为50kPa,求反应的?rSm,?rGm。
解:列表如下 物质 H2(g) CO(g) CH4(g) CO2(g) B?/kJ·mol-1 ?fHm?/kJ·mol-1 ?fGm?/ J·mol-1·K-1 Sm0 -110.525 -74.81 -393.509 0 -137.168 -50.72 -394.359 130.684 197.674 186.264 213.74 ??={2×(1)?rSm130.684+2×197.674 – 186.264 – 213.74} J·mol-1·K-1 ???BSm = 256.712 J·mol-1·K-1
??={2×0 +2×(-110.525)- (-393.509)-(-74.81)} kJ·mol-1 ?rHm???B?fHmB40
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库天大物化五版上册习题答案(8)在线全文阅读。
相关推荐: