物理化学上册习题解(天津大学第五版)
75Cp,m,mix??yBCp,m(B)?0.6?R?0.4?R?3.1R
22BT2?(p2/p1)R/Cp,mT1?{(200/50)1/3.1?300}K?469.17K
?H?{10?3.1R?(469.17?300)}J?43603J?43.60kJ
l4mo l n B?6mo lCV,m,mix?Cp,m,mix?R?2.1R nA?yAn?0.4?10mo??U?{10?2.1R?(469.17?300)}J?29538J?29.54kJ
pB,1?ybp1?0.6?50kPa?30kPa, pA,1?20kPa pB,2?ybp2?0.6?200kPa?120kPa, pA,2?80kPa
pA,2T25483.8780?nARln?{4?R?ln?4?Rln}J?K?1 T1pA,1230020?S(A)?nACp,m(A)ln ?{37.18?46.105}J?K?1??8.924J?K?1
因是绝热可逆过程,△S=△SA+△SB=0,故有△SB = - △SA = 8.924J·K-1 或
?S(B)?nBCp,m(B)lnpB,2T27483.87120?nBRln ?{6?R?ln?6?Rln}J?K?1 T1pB,1230030 ?8.924J?K?13-18 解:先求混合物的摩尔定压热容
53CV,m,mix??yBCp,m(B)?0.25?R?0.75?R?1.75R
22BQ = 0,W = △U
?pamb(V2?V1)?nCV,m,mix(T2?T1) nET2?V2?V1??n?1.75R(T2?T1)?V2将数据代入,得 2.55 T2 = 1.75 T1= 1.75×400K,故 T2 = 274.51 K W??U?{8?1.75R?(274.51?400)}J??14610J??14.61kJ Cp,m,mix?CV,m,mix?R?1.75R?R?2.75R
?H?{8?2.75R?(274.51?400)}J??22954J??22.95kJ
nB?yBn?0.25?8mol?2mol, nA?6mol
?S(A)?nACp,m(A)lnT2V?nARln2T1V1
3274.51250 ?{6?R?ln?6?Rln}J?K?1 ?{?28.172?80.29}J?K?1?52.118J?K?1240050?S(B)?nBCp,m(B)lnT2V?nBRln2T1V15274.51250 ?{2?R?ln?2?Rln}J?K?1 ?{?15.651?26.763}J?K?1?11.112J?K?1
240050?S??S(A)??S(B)?(52.118?11.112)J?K?1?63.23J?K?13-19 解:Qp = 0,△H = 0,△H1 +△H2 = 0
31
物理化学上册习题解(天津大学第五版)
100×4.184×(T2 – 300.15K)+200×4.184×(T2 – 345.15K)=0 T2 – 300.15K + 2×(T2 – 345.15K)=0 T2 = 330.15 K 即 t = 57 ℃
330.15330.15???1K-1 ?S??100?4.184?ln?200?4.184?ln?J?K= 2.68 J·300.15345.15??100?103?50?10?3?3-20 解:nCH????mol?16.667mol ??4300??nH2?100?103?100?10?3???300?? ??mol?33.333mol?V2V?nCH4Rln2V1,H2V1,CH4?S??SH2??SCH4?nH2Rln ?33.333?8.3145?ln
150150?16.667?8.3145?ln10050 = (13.516 +18.310)J·K-1= 31.83 J·K-1
3-21解:QV = 0,W = 0, △U = 0,则有 △U(单)+△U(双) = 0 2?35R?(T2?200K)?3?R?(T2?400K)?0 22解得 T2 = 342.86K ?S(A)?nACV,m(B)lnT2V342.86150??3?1?nARln2 ??2?R?ln?2?R?ln?J?K T1,AV1,A?220050? = 31.714 J·K-1 TV342.86150??5?1?S(B)?nBCV,m(B)ln2?nBRln2??3?R?ln?3?R?ln?J?K
T1,BV1,B?2400100? = 0.502 J·K-1
△S = △S(A)+△S(B)= (31.714 + 0.502)J·K-1= 32.216 J·K-1 =32.22 J·K-1
3-22 解:设左侧的N2(g)用A代表,左侧的N2(g)用B代表。混合过程示意如下: A ,2 molA B,4 mol 2 mol B , 4 mol ΔSA 3350 dmVA, VB, , 75 dm , 200K,pT ;p T;p A 500K,p B ΔSB
QV = 0,W = 0, △U = 0,则有 △U(A)+△U(B) = 0
2?CV,m?(T2?200K)?4?CV,m?(T2?500K)?0 解得 T2 = 400 K
方法一:若用分体积计算熵变:
VA?(2/6)?125dm3?41.67dm3,VB?(4/6)?125dm3?83.33dm3, ?S(A)?nACV,m(B)lnV2,A?5T240041.67??1?nARln??2?R?ln?2?R?ln?J?KT1,AV1,A?220050? ?( 28.816-3.03 0) J?K?1?25.786J?K?1V2,B?5T40083.33??1?S(B)?nBCV,m(B)ln2?nBRln ??4?R?ln?4?R?ln?J?KT1,BV1,B50075??2 ?(-18.553?3.503)?-15.05J?K?132
物理化学上册习题解(天津大学第五版)
△S = △S(A)+△S(B)= (24.786– 15.05)J·K-1= 10.736 J·K-1 方法二:先计算A和B各自初始压力及终态压力 pA?p?2?8.315?2004?8.315?500;?66.52kPap??221.73kPa B?3?350?1075?106?8.315?400?159.65kPa
125?10?3T2p40066.52??7?1?nARlnA ??2?R?ln?2?R?ln?J?KT1,Ap?2200159.65??S(A)?nACp,m(B)ln ?( 40.345-14.559) J?K?1?25.786J?K?1?S(B)?nBCp,m(B)lnT2p400221.73??7?1?nBRlnB ??4?R?ln?4?R?ln?J?KT1,Ap?2500159.65?
?( -25.976?10.925) J?K?1?15.05J?K?1△S = △S(A)+△S(B)= (24.786– 15.05)J·K-1= 10.736 J·K-1
3-23 解:n = (1000÷32)mol = 31.25 mol Q = Qp = △H = n△vapHm = (31.25×35.32)kJ = 1103.75 kJ W = - pamb(Vg – Vl )≈ - pambVg = -ng RT = {- 31.25×8.3145×337.80} = - 87770 J= - 87.77 kJ
△U = Q – W = (1103.75 - 87.77)kJ = 1015.98 kJ
△S = n△vapHm / Tvap = (1103750÷337.80) = 3267 J·K-1 = 3.267 k J·K-1
3-24解:常压绝热混合,Qp = 0,设末态温度为T2(T2>273.15K),于是有 500×333.3 + 500×4.184×(T2 – 273.15K)+ 1000×4.184×(T2 – 298315K)=0 解得 T2= 263 K 显然,- 10℃这个结果不合理。因此,只是高温水放出热量使部分冰熔化,温度仍是0℃。设0℃冰量为 m,则0℃水量为(500 – m)g,其状态示意如下
500g,H2O(s), 273.15KQp?0(500?m)gH2O(l), mH2O(s), 273.15K ????1000g, H2O(l), 298.15K1000g, H2O(l), 273.15K(500-m)g×333.3 J·g-1+ 1000g×4.184 J·g-1·K-1×(273.15K– 298.15K)=0
333.3 m = 62050 g
m = 186.17 g 0℃熔化的水量 = (500 – 186.17)g = 313.83 g ?S??fusS(H2O,s)??S(H2O,l)
273.15??313.83?333.3?1?1 ???1000?4.184?ln?J?K?16.52J?K273.15298.15??3-25 解:常压绝热混合,Qp = 0, 500g×333.3 J·g-1+ 500×4.184 J·g-1·K-1×(T2-273.15K)
+1000g×4.184 J·g-1·K-1×(T2– 353.15K)=0
12.552 T2 = 3764.7188 K T2 = 299.93 K 冰的熵变:
?S1??fusS(H2O,s)??S(H2O,l)
299.93??500?333.3?1?1 ???500?4.184?ln?J?K?805.765J?K273.15273.15??299.93??1?1水的熵变:?S2???1000?4.184?ln?J?K??683.430J?K 353.15??△S = △S1 + △S2 = 122.33 J·K-1
3-26 解:和3-24题类似,高温水放出热量使部分冰熔化,温度仍是0℃。设0℃冰量为 m,
33
物理化学上册习题解(天津大学第五版)
则0℃水量为(500 – m)g,其状态示意如下
500g,H2O(s), 263.15KQp?0(500?m)gH2O(l), mH2O(s), 273.15K ????1000g, H2O(l), 298.15K1000g, H2O(l), 273.15K500×2.00 J·g-1·K-1×(273.15K– 263.15K)+(500-m)g×333.3 J·g-1
+ 1000g×4.184 J·g-1·K-1×(273.15K– 298.15K)=0 333.3 m = 72050 g
m = 216.17g 熔化的水量 = (500 – 216.17)g = 283.83 g 冰的熵变:
?S1??S(H2O,S)??fusS(H2O,s)
273.15283.83?333.3???1?1 ??500?2?ln???J?K?383.63J?K263.15273.15??273.15??1?1水的熵变:?S2???1000?4.184?ln?J?K??366.42J?K 298.15??△S = △S1 + △S2 = 17.21 J·K-1
3-27 解:设液态苯全部凝固,冰全部融化,于是示意如下
8molH2O(l), 2molH2O(l), t8molH2O(s), 2molH2O(l), 0oCQ?0 ????o5molC6H6(s), 5molC6H6(s),t5molC6H6(s), 5molC6H6(l), 5.51C 8mol×6004 J·mol-1+10mol×75.37 J·mol-1·K-1(T2 - 273.15K)
+5mol×(-9832)J·mol-1 +10mol×122.59 J·mol-1·K-1×(T2-278.66K)=0 1979.6 T2 =548610.395K T2 =277.13K 所以,t=3.98℃,0℃<3.98℃<5.51℃,假设合理。
277.31??8?6004?1?S(H2O)???10?75.37ln?J?K
273.15??273.15=(175.845+11.392)J·K-1= 187.24 J·K-1
)277.31??5?(?9832?1?S(C6H6)???10?122.59ln?J?K
278.66??278.66=(-176.416 - 5.953 )J·K-1= -182.37 J·K-1
△S = △S1 + △S2 = 187.24 J·K-1 - 182.37 J·K-1 = 4.87 J·K-1
3-28解:(1)p乙醚?nRT/V??0.1?8.314?308.66/10?kPa?25.664kPa (2) 画出如下框图:
0.1mol 乙醚(g)?H ?S ?????0035.51C, p?0kPa35.51C, 25.664kPa △H0 △S0
0.1mol 乙醚(l)0.1mol 乙醚(l) △H1 △S1
35.510C, 101.325kPa △H2 △S2
0.1mol 乙醚(g)035.51C, 101.325kPa
34
物理化学上册习题解(天津大学第五版)
?H??H1??H2?2.5104kJ; W?0; Q??U??H-?(pV)??H-ngRT?2.2538kJ ?S1??H1/T?(2.5104?103/308.66)J?K?1?8.133J?K?1 ?H0?0; ?S0?0: ?H1?0.1?25.104kJ?2.5104kJ ?H2?0?S2?nRln(p1/p2)??0.1?8.314ln(101.325/25.664)?J?K?1?1.142J?K?1
△S= △S1+ △S2=9.275J·K-1
3-29 解:把苯蒸气看作是理想气体,恒温可逆压缩时,△U1=0,△H1=0,于是有 W1?nRTln(p2/p1) ?{1?8.3145?353.25?ln(101.325/40.53)}J?2691J W2 = -pamb(Vl – Vg) ≈pambVg = ng RT= (1×8.3145×353.25)J =2937.1 J W3 ≈ 0; W= W1 + W2 + W3=(2691+2937.1+0)J= 5628 J = 5.628 kJ △U1 = 0,Q1 = W1 = 2937 J; Q2 = -30878 J Q3??333.15K353.25KnCp,mdT?{1?14.27?(333.15?353.25)}J??2868J
Q = Q1 + Q2 + Q3 = {(-2691)+( -30878)+( – 2868)}= - 36437J = -36.437 kJ
△U = Q + W = - 36.437 kJ + 5.628 kJ = - 30.809 kJ
△H = △H1 + △H2 + △H3 ={ 0 +(-30.868)+(-2.868)} kJ = - 33.746 kJ
3-30 解:因液态水占的体积小,可以认为20 dm3 的密闭容器体积是气体的体积,于是,与液态成平衡的水气的物质的量为
47.343?103?20?10?3?始态:ng,353.15K?p1V1????mol?0.3225mol ??RT1?8.314?353.15?末态:ng,373.15Kp1V1?101.325?103?20?10?3?????mol?0.6532mol ??RT1?8.314?373.15?始态液态水的物质的量 = 2mol – 0.325 mol =1.6675 mol
末态液态水的物质的量 = 2mol – 0.6532 mol =1.3468 mol 为求过程的Q,△U,△H及△S,设计如下途径:
1.6775 mol H2O(l)1.3468 mol H2O(l)?H0.3225 mol H2O(g)???0.6532 mol H2O(g) 353.15K, 20 dm3373.15K, 20 dm3
△H1 △H4
1.6775 mol H2O(l)1.3468 mol H2O(l)H20.3225 mol H2O(g)?????0.6532 mol H2O(g)
298.15K298.15K△H1 = {1.6775×75.75×(298.15 – 353.15)+ 0.3225×33.76×(298.15 – 353.15)}J
= (- 6988.88 – 598.82 )= - 7587.7 J △H2 = {(1.6775 – 1.3468 )×44106}J = 14556.1 J △H3 = {1.3468×75.75×(373.15.15 – 298.15)+ 0.6532×33.76×(373.15 – 298.15)}J
= (7651.5 + 1653.9 )= 9305.4 J
△H = △H1 + △H2 + △H3 =16274 J =16.274 kJ
35
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库天大物化五版上册习题答案(7)在线全文阅读。
相关推荐: