柠檬酸发酵工艺条件的优化
摘要
柠檬酸(2-羟基丙烷三羧酸),是重要的工业原料。可从植物原料中提取,也可由糖进行发酵制得。实验研究了不同硫酸铵浓度分别对黑曲霉摇瓶发酵和实罐发酵生产柠檬酸的影响。在菌浓度、发酵过程PH、酸度、残糖、温度在发酵过程中的变化几个方面对实罐和摇瓶发酵进行了相关比较。结果表明:1)摇瓶发酵的最适硫酸铵浓度为0.4%;实罐发酵最适硫酸铵浓度为0.5%,实罐发酵时硫酸铵浓度过高将产生大量泡沫不利发酵;2)实罐发酵与摇瓶发酵在起始含糖量、菌浓度及发酵温度相同的情况下,随发酵进行,摇瓶发酵的温度更稳定,两者的菌浓度、残糖、PH值变化规律高度一致,酸度变化规律基本一致。另外实验还就温度对黑曲霉发酵生产柠檬酸的影响作用进行了探讨,结果表明实罐发酵的最适温度约为35℃,温度过高会导致发酵液水分流失过多而使发酵失败。 1. 课题背景 1.1柠檬酸简介
柠檬酸(citric acid)是生物体主要代谢产物之一,在自然界中分布很广,主要存在于柠檬、柑橘、菠萝、梅、李、梨、桃、无花果等果实中,尤以未成熟者含量居多。 柠檬酸又名枸橼酸,学名2-羟基丙烷三羧酸、2-羟基丙烷-1,2,3-三羧酸.
分子式:C6H8O7 (相对分子质量:192.13) 物理性质:无色透明或半透明晶体,或粒状、微粒状粉末,虽有强烈酸味,但令人愉快,
稍有涩味。极易溶于水,溶解度随温度的升高而增大。 化学性质:从结构上讲柠檬酸是一种三羧酸类化合物,并因此而与其他羧酸有相似的物理和化学性质。加热至175°C时它会分解产生二氧化碳和水,剩余一些白色晶体。柠檬酸是一种较强的有机酸,有3个H+可以电离; 加热可以分解成多种产物,与酸、碱、甘油等发生反应。 1.2柠檬酸用途
柠檬酸被称为第一食用酸味剂,极广泛地用作酸味剂、增溶剂、缓冲剂、抗氧化剂等,用于饮料、糖果、酿造酒、冰淇淋、酸奶、罐头食品、豆制品与调味品等的生产中。另外,在药物、美容品、化妆品工业上也有着重要的应用。它是香料和饮料的酸化剂,在食品和医学上用作多价螯合剂,同时是化学中间体,用于制造药物,也可用于金属清洁剂、媒染剂等。柠檬酸的盐类、酯类和衍生物也各具特点,用途极为广泛而有良好的发展前景。 1.3柠檬酸循环
又称三羧酸循环(tricarboxylic acid cycle),克雷布斯循环(Krebs cycle)。体内物质糖、脂
肪或氨基酸有氧氧化的主要过程。通过生成的乙酰辅酶A与草酰乙酸缩合生成三羧酸(柠檬酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环,从而为细胞提供了降解乙酰基而提供产生能量的基础。由克雷布斯(Krebs)于20世纪30年代最先提出。 1.4实验发酵机理
1)以薯干粉、玉米粉或淀粉等糖类为原料经黑曲霉柠檬酸产生菌(我们采用黑曲霉M288)糖化后产生高浓度的葡萄糖。
2)、黑曲霉利用糖类发酵产生柠檬酸:葡萄糖以EMP(糖酵解途径或者)、HMP(磷酸戊糖循环)两种途径产生丙酮酸,丙酮酸一方面氧化脱羧形成乙酰CoA,另一方面经CO2固定化反应后生成草酰乙酸,最后草酰乙酸和乙酰CoA缩合产生柠檬酸。
3)生理调节:柠檬酸是黑曲霉的良好碳源,故柠檬酸的积累是菌体代谢失调的结果。1)Mn2+抑制蛋白质合成造成NH4+的浓度增大,从而解除对PFK的抑制,使EMP通畅;2)柠檬酸脱氢酶在柠檬酸浓度高的情况下活性降低,进一步促进柠檬酸的积累。 1.5发酵方法
发酵有固态发酵、液态浅盘发酵和深层发酵 3种方法。固态发酵是以薯干粉、淀粉粕以及含淀粉的农副产品为原料,配好培养基后,在常压下蒸煮,冷却至接种温度,接入种曲,装入曲盘,在一定温度和湿度条件下发酵。采用固态发酵生产柠檬酸,设备简单,操作容易。液态浅盘发酵多以糖蜜为原料,其生产方法是将灭菌的培养液通过管道转入一个个发酵盘中,接入菌种,待菌体繁殖形成菌膜后添加糖液发酵。发酵时要求在发酵室内通入无菌空气。深层发酵生产柠檬酸的主体设备是发酵罐。微生物在这个密闭容器内繁殖与发酵。现多采用通用发酵罐。它的主要部件包括罐体、搅拌器、冷却装置、空气分布装置、消泡器,轴封及其他附属装置。发酵罐径高比例一般是1:2.5,应能承受一定的压力,并有良好的密封性。除通用式发酵罐外,还可
采用带升式发酵罐、塔式发酵罐和喷射自吸式发酵罐等。
为了得到产柠檬酸的优良菌种,通常是从不同地区采集的土壤或从腐烂的水果中分离筛选,然后通过物理和化学方法进行菌种选育。例如薯干粉深层发酵柠檬酸的菌种就是通过柠檬酸不断变异和选育得到的。菌种适合在高浓度下发酵,产酸水平较高。 1.6黑曲霉菌柠檬酸发酵的影响因素
柠檬酸的发酵因菌种、工艺、原料而异,但在发酵过程中还需要掌握一定的温度、通风量及pH值等条件。一般认为,黑曲霉适合在28~30℃时产酸。温度过高会导致菌体大量繁殖,糖被大量消耗以致产酸降低,同时还生成较多的草酸和葡萄糖酸;温度过低则发酵时间延长。微生物生成柠檬酸要求低pH,最适pH为2~4,这不仅有利于生成柠檬酸,减少草酸等杂酸的形成,同时可避免杂菌的污染。柠檬酸发酵要求较强的通风条件,有利于在发酵液中维持一定的溶解氧量。通风和搅拌是增加培养基内溶解氧的主要方法。随着菌体生成,发酵液中的溶解氧会逐渐降低,从而抑制了柠檬酸的合成。采用增加空气流速及搅拌速度的方法,使培养液中溶解氧达到60%饱和度对产酸有利。柠檬酸生成和菌体形态有密切关系,若发酵后期形成正常的菌球体,有利于降低发酵液粘度而增加溶解氧,因而产酸就高;若出现异状菌丝体,而且菌体大量繁殖,造成溶解氧降低,使产酸迅速下降。
尽管经过几十年的研究,关于柠檬酸发酵机制仍然有很多不够了解的地方,柠檬酸的合成积累涉及到一系列的酶,它们是相互关联的,
影响制约柠檬酸发酵的因子也是多种多样的,发酵液中金属离子的含量对柠檬酸的合成有非常重要的作用,过量的金属离子引起产酸率的降低,铁离子能刺激乌头酸水合酶的活性,从而影响柠檬酸的积累。柠檬酸发酵用的糖蜜原料,因含有大量金属离子,必须应用离子交换法或添加亚铁氰化钾脱铁方能使用。然而微量的锌、铜离子又可以促进产酸。相对来说,发酵培养基中的金属离子以及小分子量的有机物是比较容易控制的因子。但是每种因子的影响不是绝对的,如金属离子Fe2+ 、Mn2+ 等,他们并不是可以无条件降低其浓度,同时它们也是微生物其它正常代谢途径中必须因子,我们只能寻找一个最合适于柠檬酸发酵的浓度。 资料表明:高浓度Mn2+将刺激乙酰辅酶A,造成草酰乙酸浓度下降,不利于合成柠檬酸。铜离子能抑制柠檬酸裂解酶活力[6],培养基中加Cu2+ ,有利于达到最高柠檬酸产量。柠檬酸在顺乌头酸酶的催化下转化为顺乌头酸,进而转化为异柠檬酸,Fe2+是乌头酸水合酶专一激活剂,但柠檬酸发酵开始时,需要少量铁存在以促进菌体生长和为柠檬酸合成作准备,随后要控制Fe2+ 的存在才能开始并大量积累柠檬酸。Johnson等在研究黑曲霉的CO2 固定作用时发现有两个CO2 固定系统,这两个系统需要Mg2+、K + 。也有说几种常见的金属离子对柠檬酸合成酶的抑制作用,且Ca2+> Mg2+ >Na+ >K+ ,当然还与离子强度有关。
AMP、无机磷和NH4+对磷酸果糖激酶(PFK)有活化作用,NH4+还能有效的解除柠檬酸和ATP对其抑制,NH4+的浓度和柠檬酸生产速度有密切关系。发酵过程中加入甲醇能明显提高柠檬酸产量。其可
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库黑曲霉产柠檬酸在线全文阅读。
相关推荐: