?gVcos?t5?13解:i??m?0i??Incosn?tn?0?当cos?t?0当cos?t?01??1??gVcos?td?t?gVm2?????m1??1I1??gVmcos2?td??t??gVm???21?21???gVm2In??gVmcos?tcosn?td??t????n?1?????05?15解:i?iD1?iD2I0?n为偶数n为奇数
?gVcos?tiD1??m?024?当cos?t?0当cos?t?0?gVcos?tiD2??m?0当cos?t?0当cos?t?0k?1??1??k?1,2,3,??i?gVm?gVm?cos2k?0t2??k?1?2k??15?16解:当V0?1?msin?t?sin?0t?0时,i?0;当V0?1?msin?t?sin?0t?0时,i?gV0?1?msin?t?sin?0t
5?17解:v0?RL?iD1?iD2??RLk?v1?v2??k?v1?v2??4kRLv1v2
5?18解:v0?RL?i2?i3??RL?i4?i1??RL?i2?i4?i1?i3?22??cos2kω0tsinΩtcos2kω0t??i?gV0?1?msinΩt?2??2m??22?4k?14k?1k?1k?1???k?1,2,3,??
2????R?b?R?b?R?bLLL?RLb0?b1?v1?v2??b2?v1?v2??b3?v1?v2?2203??b1??v1?v2??b2??v1?v2??b3??v1?v2??b1?v1?v2??b2?v1?v2??b3?v1?v2?223300???
?b1??v1?v2??b2??v1?v2??b3??v1?v2?3??8RLb2v1v2?1?gm?5?23解:diC23?b1?2b2vBE?3b3vBE?4b4vBEdvBEdiCdvBE?b1?2b2V0mcos?0t?3b3V02mcos2?0t?4b4V03mcos3?0tvBE?v0gm?t???b1?2b2V0mcos?0t?gm1?2b2V0m?3b4V03m3b3V02m?1?cos2?0??2b4V03mcos?0t?b4V03m?cos?0t?cos3?0t?21gm1?b2V0m?1.5b4V03m2qvBEdiCaISq?2?gm??vBE?ekTdvBEkTgc?digm?t??CdvBEVomcos?0taIq?SVomcos?0t?ekTkTqvBE?v023??aISqq1?q1?q???Vomcos?0t?1?Vomcos?0t??Vomcos?0t???Vomcos?0t????kT2?kT6?kT?????kT?qV?I?qV??I?qV??qV???ISomcos?0t??IS?om?cos2?0t?S?om?cos3?0t?S?om?cos4?0tkT2?kT?6?kT??kT?gm1qV3?IS?qVom???ISom???kT8?kT?3234?IqV3?IS1gc?gm1?Som?22kT165?25解:i??i1?i3?i2?i4?qVom????kT?23?a0?a1?v0?vs??a2?v0?vs??a3?v0?vs??a4?v0?vs???34?a0?a1?v0?vs??a2?v0?vs??a3?v0?vs??a4?v0?vs???234?a0?a1??v0?vs??a2??v0?vs??a3??v0?vs??a4??v0?vs???234?a0?a1??v0?vs??a2??v0?vs??a3??v0?vs??a4??v0?vs???2343?8a2v0vs?16a4v0vs?16a4vs3v0??
5?29解:gc?0.5IE262?gic?gb?e??sIE?1???r??26bb????T?I0.5?E??0.55?mS?26?026?350.5IE0.5?0.5??9.6?mS?2626goc?gce?4??S?Apcmax2gc9.62??40dB????104734gicgoc4?0.55?0.004222???QL?2fi?2?465??????30.1dB?Apc?Apcmax??1?Q???Apcmax?1?Q2?f??10473??1?100?10???12280?00.7?????IE260.5IE0.5?0.085?30解:gc?0.5???1.54?mS?22626??sIE?1?????26rbb????T?I0.08gic?gb?e?E??0.1?mS?26?026?30goc?gce?10??S?Apcmax2gc1.542???592.9??28dB?4gicgoc4?0.1?0.0122?gc?GL?1.54?0.1Apc???g?G???g??0.01?0.1??0.1?196??23dB???L?ic?oc
5?32解:i??i1?i2?i3?i4???a??a?a0?a1?v0?vs??a2?v0?vs??a3?v0?vs??a4?v0?vs???23423423?a0?a1?v0?vs??a2?v0?vs??a3?v0?vs??a4?v0?vs???0023?44?a1??v0?vs??a2??v0?vs??a3??v0?vs??a4??v0?vs????a1??v0?vs??a2??v0?vs??a3??v0?vs??a4??v0?vs?????3?8a2v0vs?16a4v0vs?16a4vs3v0??
5?34解:因存在二次项,能进行混频。只要满足fn?fi就会产生中频干扰;当fn?f0?fi时产生镜像干扰。由于不存在三次项,不会产生交调干扰;有二次项,可能产生互调干扰;若有强干扰信号,则能产生阻塞干扰。
5?35解:1.此现象属于组合频率干扰。这是由于混频器的输出电流中,除需要的中频电流外,还存在一些谐波频率和组合频率,如果这些组合频率接近于中频放大的通带内,它就能和有用中频一道进入中频放大器,并被放大后加到检波器上,通过检波器的非线性效应,与中频差拍检波,产生音频,最终出现哨叫声。2.因fi?465kHz,p、q为本振和信号的谐波次数,不考虑大于3的情况。所以落于535~1605kHz波段内的干扰在fS?930kHz和fS?1395kHz附近,1kHz的哨叫声在929kHz、931kHz、1394kHz、1396kHz时产生。3.提高前端电路的选择性,合理选择中频等。5?36解:若满足?pf1?qf2?fs,则会产生互调干扰:?MHz?,不会产生互调干扰;p?1、q?1,f1?f2?774?1035?1.809?MHz?,会产生互调干扰;p?1、q?2,f1?2f2?774?2?1035?2.844?MHz?,会产生互调干扰;p?2、q?1,2f1?f2?2?774?1035?2.583?MHz?,会产生互调干扰;p?2、q?2,2?f1?f2??2??774?1035??3.618?MHz?,会产生互调干扰;p?2、q?3,2f1?3f2?2?774?3?1035?4.653?MHz?,会产生互调干扰;p?3、q?2,3f1?2f2?3?774?2?1035?4.392?MHz?,会产生互调干扰;p?3、q?3,3?f1?f2??3??774?1035??5.427p、q大于3谐波较小,可以不考虑。?3f?2f0?2?1??S5?37解:?fS?f0?0.8?MHz??2fS?3f0?2??fS?2f0?2??fS?f0?0.4?MHz???2f?3f?2S0??fS?0.2MHzf0?0.6MHz
?2????3fs?2f0?30??fs?f0?12?MHz??2f?3f?30s0??fs?2f0?30?fs?f0?20?MHz???2fs?f0?30?fS?4MHzf0?16MHz
5?39解:若满足?pf1?qf2?fs,则会产生互调干扰。已知f1?19.6MHz、f2?19.2MHz、fs?f0?fi?23?3?20?MHz?,故没有互调信号输出。
第5章
6?4解:P??VCCICO?24?0.25?6?W??C?P05??83.3%P?622VcmVCC242Rp????57.6???2P02P02?5Icm1?2P02P02?5???0.417?A?VcmVCC24Icm10.42??1.67Ic00.25gc??c??查表得?c?77o
2ηVCC2?0.7?126?6解:gc?θc????1.56查表得θc?91oVcm10.8P0?Ik2R?22?1?4?W??1??1??PC?P??P0???1P??1???4?1.7?W?0?η??0.7??c?Ic0906?7解:icmax???282?mA?oα0900.319
Ic1mP0????α?90?io1cmax?mA??0.5?282?14111RpIc21m??200?0.1412?2?W?22P02ηc???74%VCCIc030?0.09
22222VcmIkmR2???0L?IkmR2???0L?RCIkmR2???0L?RIkmR6?8证:P0?????22L2RP2L22??0L?RC
i2.26?9解:Vcm?VCC?vcmin?VCC?cmax?24??21.25?V?gcr0.8222??????Ic0?icmax?0?70o??2.2?0.253?0.5566?A?Icm1?icmax?1?70o??2.2?0.436?0.9592?A?P??VCCIc0?24?0.5566?13.36?W?11P0?VcmIcm1??21.25?0.9592?10.19?W?22PC?P??P0?13.36?10.19?3.17?W??C?P010.19??76.3%P?13.36
2Vcm21.252Rp???22.16???2P02?10.19
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库高频电子线路课后习题 - - 张肃文(3)在线全文阅读。
相关推荐: