成的数组(x1,x2,x3,?,xn)满足条件: ①
?xi?1ni?0; ②?xi?1.
i?1n(Ⅰ) 当n?2时,求x1,x2的值;
(Ⅱ)当n?3时,求证:3x1?2x2?x3?1; (Ⅲ)设a1?a2?a3???an,且a1?an(n?2), 求证:
1ax?(a1?an). ?ii2i?1??x1?x2?0,(Ⅰ)???x1?x2?1.(1)(2)n
由(1)得x2??x1,再由(2)知x1?0,且x2?0.
1?x?,1??2当x1?0时,x2?0.得2x1?1,所以????????????2分
?x??1.2??21?x??,??12当x1?0时,同理得???????????????????4分
1?x?.2??2(Ⅱ)证明:当n?3时,
由已知x1?x2?x3?0,x1?x2?x3=1.
所以3x1?2x2?x3?x1?2(x1?x2?x3)?x3
?x1?x3?x1?x3?1.??????????????????9分
(Ⅲ)证明:因为a1?ai?an,且a1?an(i?1,2,3,?,n).
所以(a1?ai)?(ai?an)?(a1?ai)?(ai?an)?a1?an,
即a1+an?2ai?a1?an (i?1,2,3,?,n).???????????11分
1n1n1ax?ax?ax?ax???iiii1?in?i2i?12i?12i?1i?1nn?(2a?a?a)xi1ni?1ni
1n1n??(a1?an?2aixi)??(a1?anxi) 2i?12i?11?a1?an2?n?xi?1i
1(a1?an).???????????????????????14分 2错误!未指定书签。.(北京市丰台区2013届高三上学期期末考试数学文试题)(本题共14分)
已知曲线C:y2?2x(y?0),A1(x1,y1),A2(x2,y2),???,An(xn,yn),???是曲线C上的点,且满足一列点Bi(ai,0)(i?1,2,???)在x轴上,且?Bi?1AiBi(B0是坐标原点)0?x1?x2?????xn????,
是以Ai为直角顶点的等腰直角三角形. (Ⅰ)求A1、B1的坐标; (Ⅱ)求数列{yn}的通项公式;
4(Ⅲ)令bi?,ci?ai?2??yi,是否存在正整数N,当n≥N时,都有
?b??c,若
iii?1i?1nn存在,求出N的最小值;若不存在,说明理由.
(Ⅰ)∵?B0A1B1是以A1为直角顶点的等腰直角三角形,
∴直线B0A1的方程为y=x.
?y?x?2由?y?2x 得,x1?y1?2,得A1(2,2),B104),(?y?0?. ?.??.??.?......3分
(Ⅱ)根据?Bn?1AnBn和?BnAn?1Bn?1分别是以An和An?1为直角顶点的等腰直角三角形可
得,??an?xn?yn ,即xn?yn?xn?1?yn?1 .(*)??.?????????..5分
?an?xn?1?yn?1∵An和An?1均在曲线C:y2?2x(y?0)上,
22∴yn?2xn,yn?1?2xn?1,
22ynyn22∴xn?,xn?1??1,代入(*)式得yn?1?yn?2(yn?1?yn), 22∴yn?1?yn?2(n?N).??????? ??????????..?..?.?..7分 ∴数列{yn}是以y1?2为首项,2为公差的等差数列,
故其通项公式为yn?2n(n?N) . ????....??????????...??..8分
2yn?2n2, ?.?????????????????9分 (Ⅲ)由(Ⅱ)可知,xn?2**∴an?xn?yn?2n(n?1),????????..????????????.?10分
42?∴bi?,ci?2i(i?1)i(i?1)∴
??2?yi?1, 2i?bi?i?1n222 ????1?22?3n(n?1)=2(1?111111??????) =2(1?),?????.??..11分 223nn?1n?111(1?n)n11122?1?1. ????????.??12分 c???????in12222n2i?11?2欲使
?b??c,只需2(1?n?1)<1?2iii?1i?1nn11n,
n?11??n, ???????????????????.????13分 n?12n?11??0(n?N*),?n?0 , n?12只需
∴不存在正整数N,使n≥N时,
?b??c成立.????????.14分
iii?1i?1nn错误!未指定书签。.(北京市通州区2013届高三上学期期末考试数学文试题)现有一组互不
相同且从小到大排列的数据a0,a1,a2,a3,a4,a5,其中a0?0.记
n1xna?,yn??a0?a1???an??n?0,1,2,3,4,5?,T?aa?a?0?12?a3?a4,
5T作函数y?f?x?,使其图象为逐点依次连接点P,2,3,4,5?的折线. n?xn,yn??n?0,1(Ⅰ)求f?0?和f?1?的值;
(Ⅱ)设直线Pn?1Pn的斜率为kn?n?1,2,3,4,5?,判断k1,k2,k3,k4,k5的大小关系; (Ⅲ)证明:当x??0,1?时,f?x??x.
(Ⅰ)
f?0??a0?0, ???????????? 2分
a0?a1?a2?a3?a4?a5a0?a1?a2?a3?a4?a5?1; ????????????4分
a0?a1?a2?a3?a4?a5yn?yn?15?an,n?1,2,3,4,5. ???????????? 6分
xn?xn?1Tf?1??(Ⅱ)解:kn?因为 a0?a1?a2?a3?a4?a5,
所以 k1?k2?k3?k4?k5. ????????????8分
(Ⅲ)证:由于f?x?的图象是连接各点P,2,3,4,5?的折线,要证明n?xn,yn??n?0,1f?x??x?0?x?1?,只需证明f?xn??xn?n?1,2,3,4?.????9分
事实上,当x??xn?1,xn?时,
f?x??f?xn??f?xn?1???x?xn?1??f?xn?1?
xn?xn?1?xn?xx?xn?1f?xn?1??f?xn?xn?xn?1xn?xn?1 xn?xx?xn?1xn?1?xn
xn?xn?1xn?xn?1??x.
下面证明f?xn??xn. 法一:对任何n?n?1,2,3,4?,
5?a1?a2???an????n??5?n????a1?a2???an???????10分
?n?a1?a2???an???5?n??a1?a2???an??n?a1?a2???an???5?n?nan
??????????????11分
?n??a1?a2???an??5?n?an??
?n?a1?a2???an?an?1???a5??nT ??????????12分
所以 f?xn??a1?a2???ann??xn.??????????13分
T5法二:对任何n?n?1,2,3,4?, 当kn?1时,
yn??y1?y0???y2?y1?????yn?yn?1?
?1n?k1?k2???kn???xn;???????????????10分 55当kn?1时,
yn?y5??y5?yn?
?1????yn?1?yn???yn?2?yn?1?????y5?y4???
1?kn?1?kn?2???k5? 51n?1??5?n???xn.
55?1?综上,f?xn??xn. ???????????????13分
错误!未指定书签。.(北京市西城区2013届高三上学期期末考试数学文科试题)如图,设A是由n?n个实数组成的n行n列的数表,其中aij(i,j?1,2,3,?,n)表示位于第i行第j列的实数,且aij?{1,?1}.记S(n,n)为所有这样的数表构成的集合.
对于A?S(n,n),记ri(A)为A的第i行各数之积,cj(A)为A的第j列各数之积.令
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库【解析分类汇编系列四:北京2013高三(期末)文数】:5:数列(3)在线全文阅读。
相关推荐: