使用这种接口的载气限于氦气或氢气。当气相色谱仪出口的载气流量高于2ml/min时,质谱仪的检测灵敏度会下降。一般使用这种接口,气相色谱仪的流量在0.7~1.0ml/min。色谱柱的最大流速受质谱仪真空泵流量的限制。最高工作温度和最高柱温接近。接口组件结构简单,容易维护。传输率大100%,这种连接方法一般都使质谱仪接口紧靠气相色谱仪的侧面。这种接口应用较为广泛。
2. 开口分流型接口(Open-Split Coupling)
色谱柱洗脱物的一部分被送入质谱仪,这样的接口称为分流型接口。在多种分流型接口中开口分流型接口最为常用。该接口是放空一部分色谱流出物,让另一部分进入质谱仪,通过不断流入清洗氦气,将多余流出物带走。此法样品利用率低。 3. 喷射式分子分离器接口
常用的喷射式分子分离器接口工作原理是根据气体在喷射过程中不同质量的分子都以超音速的同样速度运动,不同质量的分子具有不同的动量。动量大的分子,易保持沿喷射方向运动,而动量小的易于偏离喷射方向,被真空泵抽走。分子量较小的载气在喷射过程中偏离接受口,分子量较大的待测物得到浓缩后进入接受口。喷射式分子分离器具有体积小、热解和记忆效应较小,待测物在分离器中停留时间短等优点。这种接口适用于各种流量的气相色谱柱,从填充柱到大孔径毛细管柱。主要的缺点是对易挥发的化合物的传输率不够高。 (三)离子源
离子源的作用是将被分析的样品分子电离成带电的离子,并使这些离子在离子光学系统的作用下,会聚成有一定几何形状和一定能量的离子束,然后进入质量分析器被分离。离子源的结构和性能与质谱仪的灵敏度和分辨率有密切的关系。样品分子电离的难易与其分子组成和结构有关。有机质谱仪常用的离子源有:电子轰击电离源(EI);化学电离源(CI)和解吸化学电离源(DCI);场致电离源(FI)和场解吸电离源(FD);快原子轰击电离源(FAB)和离子轰击电离源(IB);激光解吸电离源(LD)等。在此,只对电子轰击电离源做一介绍。
电子轰击电离源(EI)是有机质谱仪中应用最多、最广泛的离子源,也是色谱-质谱联用仪,特别是气相色谱-质谱联用仪中应用最多的离子源。所有的有机质谱仪几乎都配有电子轰击电离源。图1-3是电子轰击电离源的示意图。从热灯丝发射的电子被加速通过电离盒,射向阳极(trap),此阳极用来测量电子流强度。通常所用的电子流强度为50~250μA。改变灯丝与电离盒之间的点位,可以改变电离电压(即电子能量)。当电子能量较小(即电
离电压较小,如7~14eV)时,电离盒内产生的离子主要是分子离子。当加大电子能量(如电离电压加大到50~100eV, 常用70eV),产生的分子离子由于带有多余的能量,会部分产生断裂(电子轰击分子产生分子离子后多余的一部分能量会使分子离子产生断裂),成为碎片离子。可以使用降低电子能量的方法来简化质谱图。但电子能量太低,电离效率也降低,产生的分子离子将很少,使检测灵敏度大大降低。所以现有的标准电子轰击电离谱图(EI谱图)都是用70 eV电子能量得到的。因此在用计算机用标准谱图进行检索时,电离电压必须使用70 eV。
图1.5 电子轰击电离源示意图
1—源磁铁;2—灯丝;3—推斥极;4—离子束;5—样品入口;
6—阳极;7—电离盒
电子轰击电离的特点是稳定,操作方便,电子流强度可精密控制,电离效率高,结构简单,温控方便,所形成的离子具有较窄的动能分散,所得到的质谱图是特征的,重现性好。因此,目前绝大部分有机化合物的标准质谱图都是采用电子轰击电离源得到的。
另外,为了增强电子轰击离子源的抗污染性,电子轰击离子源需要采用惰性材料。如Agilent公司的5973系列产品,采用铜金属材料的离子源,大大增强了离子源的惰性,提高了其抗污染能力,同时也大大降低离子源的清洗频率。
电子轰击电离源要求被测有机样品必须能汽化,不能汽化或者汽化时丰崎爱生分解的有机化合物样品不能使用电子轰击源电离。正因如此,由于气相色谱所分析的有机化合物样品是必须汽化的,气相色谱-质谱联用仪使用电子轰击电离源是最为合适的。
EI特点:
(1)电离效率高,能量分散小,结构简单,操作方便。
(2)图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。
(3)所得分子离子峰不强,有时不能识别。 本法不适合于高分子量和热不稳定的化合物。
(四)质量分析器
质量分析器是质谱仪的核心,是它将离子源产生的离子按其质量和电荷比(m/z,m—离子的质量数,z—离子携带的电荷数)的不同、在空间的位置、时间的先后或轨道的稳定与否进行分离,以便得到按质荷比(m/z)大小顺序排列而成的质谱图。质谱仪中常见的质量分析器有:磁质量分析器,四级质量分析器(四极杆滤质器),飞行时间质量分析器,离子阱质量分析器和离子回旋共振质量分析器。其中磁质量分析器为静态质量分析器,其他为动态质量分析器。根据所用的质量分析器不同,相应的质谱仪分别称为磁质谱仪,四极杆质谱仪,飞行时间质谱仪,离子阱质谱仪和离子回旋共振质谱仪。由于质量分析器仅是将离子源产生的离子按其质荷比进行分离,而不与色谱仪器直接连接,直接与色谱仪器连接的是离子源。因此,各种质量分析器的质谱仪原则上都可通过“接口”与色谱仪器联用。目前与色谱仪器联用最多的是四极杆质谱仪、离子阱质谱仪和飞行时间质谱仪。下面就四极质量分析器做一简单介绍。
传统的四极杆质量分析器是由四根笔直的金属或表面镀有简述的极棒与轴线平行并等距离地置悬着构成,棒的理想表面为双曲面。整体式的四极杆设计,可使四极杆具有永久的空间结构,真正做到理想的双曲面结构。
如图1.6,在x与y各两支电极上分别加上±(U+cos2πft)的高频电压(V为电压幅值,U为直流分量,U/V=0。16784,f为频率,t为时间),离子从离子源出来后沿着与x,y方向垂直的z方向进入四极杆的高频电场中。这时,只有质荷比(m/z)满足式(1-2)的离子才能通过四极杆到达检测器,
m0.136V (1-1) ?2zrof式中,r0——场半径,cm。
其他离子则撞到四根电极上而被“过滤”掉。当改变高频电压的幅值(V)或者频率(f),则用V或f扫描时,不同质荷比的离子可陆续通过四极杆而被检测器检测。
图1.6 四极杆质量分析器示意图
1—阴极;2—电子;3—离子;4—离子源;5—检测器
四极质量分析器具有重量轻、体积小、造价低廉等优点,因此发展很快。近年来四极质量分析器的分辨率和质量范围都有很大提高,使得目前的色谱-质谱联用仪中的质谱仪大部分采用了四极质量分析器。
(五)检测器
质谱仪常用的检测器有直接电检测器、电子倍增器、闪烁检测器和微通道板等,在色谱-质谱联用仪中目前使用最多的是电子倍增检测器。下面对几种检测器的工作原理作一简单介绍。 1. 直接电检测器
直接电检测器是用平板电极或者法拉第圆筒接收由质量分析器出来的离子流,然后有直接放大器或者静电计放大器进行放大,而后记录。 2. 电子倍增器
电子倍增器运用质量分析器出来的离子轰击电子倍增管的印记表面,使其发射出二次电子,再用二次电子依次轰击一系列电极,使二次电子获得不断倍增,最后由阳极接受电子流,使其离子束信号得到放大。系列电极数目可多到十几级。通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 3. 闪烁检测器
由质量分析器出来的额高速离子打击闪烁体使其发光,然后用光电倍增管检测闪烁体发出的光,这样可将离子束信号放大。 4. 微通道板
微通道板是20世纪70年代发展起来的检测器,它是由大量微型通道管(管径约20μ
m,长约1㎜)组成的。微通道管是有高铅玻璃制成,具有较高的二次电子发射率。每一个微通道管相当于一个通道型连续电子倍增器。整个微通道板则相当于若干个这种电子倍增器并联,每块板的增益为104。欲获得更高的增益,可将微通道 板串联使用。
(六)计算机系统
现代质谱仪都配有完善的计算机系统,它不仅能快速准确地采集数据和处理数据,而且能监控质谱仪各单位的工作状态,实现质谱仪的全自动操作,并能代替人工进行化合物的定性和定量分析。色谱-质谱联用仪配有的计算机还可以控制色谱和借口的操作。下面对质谱仪的计算机系统的功能作一简单介绍。 1. 数据的采集和简化
一个被测得化合物可能有数百个质谱峰,若每个峰采数15~20次,则每次扫描采数的总量在2000次以上,这些数据是在1s到数秒内采集到的,必须在很短的时间内把这些数据收集起来,并进行运算和简化,最后变成峰位(时间)和峰强数据储存起来。经过简化每个峰由两个数据——峰位(时间)和峰强表示。 2. 质量数的转换
质量数的转换就是把获得的峰位(时间)谱转换为质量谱(即质量数-峰强关系图)。对于低分辨质谱仪先用参考样(根据所需质量范围选用全氟异丁胺,全氟煤油,碘化铯等物质作为参考样)作出质量内标,而后用指数内插及外推法,将峰位(时间)转换成质量数【质荷比(m/z),当z=1即单电荷离子,质荷比即为质量数】。在作高分辨质谱图时,未知样和参考样同时进样,未知样的谱峰夹在参考样的谱峰中间,并能很好的分开。按内插和外推法用参考样的精确质量数计算出未知样的精确质量数。 3. 扣除本底或相邻组分的干扰
利用“差谱”技术将样品谱图中的本底谱图或干扰组分的谱图扣除,得到所需组分的纯质朴图,以便于解析。 4. 谱峰强度归一化
把谱图中所有峰的强度对最强峰(基峰)的相对百分数列成数据表或给出棒图(质谱图),也可将全部离子强度之和作为100,每一谱峰强度用总离子强度的百分数表示。归一化后,有利于和标准谱图比较,便于谱图解析。 5. 标出高分辨率质谱的元素组成
对于含碳,氢,氧,氮,硫和卤素的有机化合物,计算机可以给出:高分辨率质谱的
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库气质联用(2)在线全文阅读。
相关推荐: