a3???f?3??c?????f?2??c????27 .
24a21又数列?an?成等比数列,a1??81????c ,所以 c?1;
a3?2332722a12?1?又公比q?2?,所以an????a133?3?QSn?Sn?1?n?1?1???2?? n?N* ;
?3?n?Sn?Sn?1??Sn?Sn?1?Sn?Sn?1 ?n?2?
?又bn?0,Sn?0, ?Sn?Sn?1?1; 数列
?S?构成一个首相为1公差为1的等差数列,n2Sn?1??n?1??1?n , Sn?n2
2当n?2, bn?Sn?Sn?1?n??n?1??2n?1 ;
?bn?2n?1(n?N*);
(2)Tn?11111111 ????K????L?b1b2b2b3b3b4bnbn?11?33?55?7(2n?1)??2n?1?1???3?11?1?1?11?1?1?1????K???????? 2n?2n1?21?3?5?25?7?2?
?1??1?2?1?1?n;??1???2?2n?1?2n?1 由Tn?w.w.w.s.5.u.c.o.m n100010001000?得n?,满足Tn?的最小正整数为112. 2n?120099200913.(2008 广东)设数列?an?满足a1?1,a2?2,an??an?1?2an?2? (n?3,4?),数列
3?bn?满足b1=1,bn(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有
?1?bm?bm?1???bm?k?1
(1)求数列?an?和?bn?的通项公式;
(2)记cn?nanbn(n?1,2,?),求数列?cn?的前n项和Sn.
12?an?1?2an?2?得an?an?1??(an?1?an?2) n?3 332 又a2?a1?1?0,所以?an?an?1?是以1为首项,?为公比的等比数列
3解:(1)由an??2? 所以an?an?1????,
?3? an?aa???a1??a2?a1?3??2?n?1??na?a 1?n??2?1????2n?2n?18323?2??2??2?????? ?1?1???????????????1????
233355?????????3?1?????3???1?b1?b2?1??1?b2?b3?1??由??1?b2?1,得b2??1,由??1?b3?1得b3?1 … ?b?Z,b?0?b?Z,b?023?2?3同理可得,n为偶数时,bn??1,n为奇数时,bn?1 所以bn??n?1?1当n为奇数时
??1当n为偶数时n?1?83?2??n?n??当n为奇数时5?3??5(2)cn?nanbn??
n?13?2??8?n?n??当n为偶数时?55?3?? Sn?c1?c2???cn
88888 当n为奇数时,Sn??2??3??4????n?
55555012n?13??2??2??2??2?? ??1????2????3??????n????
5??3??3??3????3??012n?14?n?1?3??2??2??2??2????1????2????3??????n???? ?55??3??3??3????3??88888 当n为偶数时,Sn??2??3??4????n?
55555012n?13??2??2??2??2?? ??1????2????3??????n????
5??3??3??3????3??012n?14n3??2??2??2??2????1????2????3??????n???? ??55??3??3??3????3???2??2??2??2? 令 Tn?1????2????3??????n??? …………①
?3??3??3??3?123n222222???????? ①?得Tn?1????2????3??????n???…………②
33?3??3??3??3?1?2??2??2??2? ①?②得Tn?1????????????n??
3?3??3??3??3??2?1???nnn223???????n ????3?(3?n)?? 2?3??3?1?312n?1n012n?1?2? 所以 Tn?9?(9?3n)??
?3??4n?239(n?3)?2?n????当n为奇数时5?3??5 因此Sn??
n?4n?279(n?3)?2??当n为偶数时??5?5??3??
习题
1.(2007 广东)已知函数f(x)?x2?x?1,?,?是力程以f(x)?0的两个根(α>β),f?(x)是f(x)的导数,设a1?1,an?1?an? (1)求?,?的值;
(2)已知对任意的正整数n有an??,记bn?ln项和Sn.
22 (2006 广东)已知公比为q(0?q?1)的无穷等比数列?an?各项的和为9,无穷等比数列annf(an)(n?1,2,3,?)
f?(an)an??(n?1,2,3,?),求数列{bn}的前nan????各项的和为
81 5(I)求数列?an?的首项a1和公比q;
(II)对给定的k(k?1,2,3,?,n),设T(k)是首项为ak,公差为2ak?1的等差数列,求T(2)的前10项之和;
Sn?b1?b2???bn,(III)设bi为数列T(k)的第i项,求Sn,并求正整数m(m?1),使得lim存在且不等于零.
(注:无穷等比数列各项的和即当n??时该无穷等比数列前n项和的极限)
Snn??nm3.(2011 广东)设b?0,数列?an?满足a1?b,an?(1)求数列?an?的通项公式;
(2)证明:对于一切正整数n,2an?bn?1?1.
nban?1(n?2).
an?1?n?14,(2004 广东)已知角?,?,?成公比为2的等比数列(??[0,2?]),sin?,sin?,sin?也成等比数列,求?,?,?的值.
5(2002 广东)设{an}为等差数列,{bn}不等比数列,a1= b1=1,a2+a4= b3,b2 b4= a3,分别求出{an}及{bn}的前10项的和S10及T10
6,(2012 安徽卷)数列{xn}满足:x1?0,xn?1??xn?xn?c(n?N) (I)证明:数列{xn}是单调递减数列的充分必要条件是c?0 (II)求c的取值范围,使数列{xn}是单调递增数列。
2*7,(2012 江苏卷) 已知各项均为正数的两个数列{an}和{bn}满足:
an?1?an?bnan2?bn2,n?N?.
2????bbn???n(1)设bn?1?1?,n?N,求证:数列????是等差数列;
aan???n???(2)设bn?1?2?
bn,n?N?,且{an}是等比数列,求a1和b1的值. an
8(2011 浙江)已知公差不为0的等差数列{an}的首项a1为a(a?R),设数列的前n项和为
Sn,且
111,,成等比数列 a1a2a4(1)求数列{an}的通项公式及Sn (2)记An?11111111,当n?2时,试比较An???...?,Bn????...?S1SSSa1a2a22a2n23n与Bn的大小.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库高考大题第四讲 数列(自己整理的,很值得收藏)(2)在线全文阅读。
相关推荐: