污水处理系统电气控制系统设计
1# 泵站 PLC工作站 2# 泵站 PLC工作站 图1-3 各子站联络图
厂 内 PLC 主 站
为实现进水提升泵的远程自动控制的安全、可靠,水位测量和提升泵的流量测量和数据分析、传输、控制等设备是不可缺少的,所以在进水泵房处安装了液位计,测量泵井的水位;每台提升泵的提升管安装电磁流量计,测量每台提升泵工作的瞬时流量;两个PLC工作站分别担负各泵站的设备控制、设备保护、数据采样、远程数据传输等作用。根据测量值对应控制程序,自动控制提升泵的运行组合。这样可以根据厂外来水量准确及时地调整泵运行数量,减少设备疲劳;同时可以取消传统泵站三班倒的人力资源耗费。
1.5沉砂池、生化池、沉淀池、污泥回流泵房和鼓风机房的设备控制
砂搅拌器的自动运行通过进水电磁流量计控制,而抽砂泵的运行状态是由微机对其开、停时间的设置控制的。
生化池厌氧区的搅拌器、沉淀池的吸刮泥机、污泥回流泵房的阀门和回流泵都是由微机触发指令通过PLC控制。
生化池好氧区的DO计、MLSS计(污泥浓度计)、ORP计(氧化还原电位计)、空气调节阀和罗茨鼓风机是污水处理的重要设备。曝气池溶解氧的控制、厌氧段与好氧段的控制、污泥浓度的控制是污水处理厂工艺的核心。该系统控制思路:PLC通过对DO的检测,自动调节空气阀的开度;当检测到空气阀的调节不能满足DO的需要时,再着行调整鼓风机的出风导叶片的开度(目前各污水厂在该系统的应用都不理想,主要问题是溶解氧的测量值滞后、不稳定及空气阀门的选型);PLC检测DO计、MLSS计、ORP计的值传送上位机进行数据分析,实时掌握厌氧段与好氧段、污泥浓度等状况,及时调整工艺控制。
1.6脱水机房的控制
脱水机房的设备主要担负由污泥提升泵将回流泵井的剩余污泥与污泥絮凝剂按比例混合进行脱水处理的任务。污泥与溶解成一定浓度的絮凝剂混合后,污泥中的固
7
污水处理系统电气控制系统设计
体颗粒被凝聚成絮团,并分离出自由水,然后被输送到带式污泥脱水机上,经顶脱水区、重力脱水区、楔形脱水区、压滤脱水区后形成滤饼排出。设备的控制思路是以时序的逻辑控制为主导,污泥和絮凝剂混合的比例通过污泥电磁流量计、清水流量计和投药泵投药量实现。该系统流程控制原理图如图1-4所示。
图1-4 污泥脱水系统流程控制图
脱水机系统的联动控制时序:
条件:各设备准备就绪,无故障;空压机、自动配药池工作正常。 启动:皮带输送机运转 带式脱水机运转 投药泵运转 污泥泵运转。 停机:控制顺序与启动顺序相反。
时间:根据实际的运行状况,可在PLC中设置各设备联动间隔时间。
1.7 PLC控制系统
污水处理厂自控系统遵循“集中管理,分散控制,数据共享”的原则,设计选型先进,安全可靠,经济合理,并能保证系统长期稳定高效地运行。PLC控制系统满足污水处理厂运行管理和安全处理的要求,即生产过程自动控制和报警、自动保护、自动操作、自动调节、提高运行效率,降低运行成本,减轻劳动强度,对污水处理厂内各系统工艺流程中的重要参数、设备工作情况等进行计算机在线集中实时监测,重要设备进行计算机在线集散控制,确保污水处理厂的出水水质达到设计排放标准。 1.7.1 PLC控制系统的基本构成及功能
污水处理厂PLC控制系统由两台计算机、8个现场控制站、工艺仪表、电量变送器构成。8个现场控制站用于控制现场设备、采集动态工艺参数和设备工作情况。现场控制站根据污水处理厂的实际工艺和构筑物的几何分布,设置在控制对象和信号源相对集中的几个单体中,并考虑在不影响控制功能和设备安全的前提下,尽量节省投资。本控制系统由8个现场控制站组成。它们分别位于:厂外1#泵站;厂外2#泵站;厂内中心控制室;厂内低压电房;鼓风机房(3个站);脱水机房。1#工作站和2#工作站与厂内主工作站的距离较远,且无人值班,故租用电信公司无源电话专线通过
8
污水处理系统电气控制系统设计
调制解调器和A1SJ71UC24通信模块进行泵房设备控制和数据传输。网络控制分布图如图1-5所示。
图1-5 全厂网络控制图
1.7.2 网络结构
污水处理厂的自控系统由环形拓扑形式(ring topology)和星形拓扑形式(star topology)两种总线网络形式构成。 1.7.3 上位机组态功能
(1)控制操作:在中控室里采用2台IBM90和INTERACT组态软件开发的工控程序能对全厂和2个污水提升泵站的被控设备进行控制、对各现场控制站PLC的参数进行设定和修改,具有良好的人机交互界面,可方便地进行图形间的切换和各种功能的调用。设立不同的安全操作等级,针对不同的操作者,设置相应的加密等级,记录操作员及其操作信息。
(2)显示功能:用设计方法生成图形,实时地、集中地显示被测参数所处的变化过程。对全厂工艺过程、工艺参数、设备状态等通过颜色的变化直观地、动态地显示。 数据处理及管理:操作记录并显示工艺参数、电量参数的变化曲线或趋势图,利用在线数据和数据库的数据进行分析、统计、计算、显示。
报警功能:当某一参数异常或设备故障时,可根据不同的报警类别,发出声光报警、屏幕报警。
9
污水处理系统电气控制系统设计
(3)报表功能:分成年度、月度、日班报表及运行参数报表。如:污水处理量、加药量、耗电量等。
(4)打印功能:各种报表的打印,各种事件及报警实时打印。
由于污水厂较小,各构筑物之间一般用渠道相连,既节省了占地,又减少了水头损失。有专家统计,采用渠道输配水的污水处理厂的水头损失要比管道输配水的小2 -3m。对于采用SBR法的小型污水处理厂,一般将沉砂池与SBR池通过渠道相连、污泥浓缩池与脱水机房和泥饼堆放场合建。这样,在常规的设计中,小型污水厂内至多有三个主要的处理单元:辅助生产区(含办公、变配电及总控等)水处理单元、泥处理单元。有时泥处理和水处理单元也可合建。
由于方便输配水,各构筑物采用了合建方式,在设计时应注意距离较近的构筑物的基础处理,埋深上尽量接近。通过连接构筑物的渠道应做沉降缝。
多座反应池的排泥管也可采用渠道而非管道和止回阀连接的方式,这样不仅减少了设备的维护管理,而且没有阀门堵塞的问题。在小型污水处理厂内多采用类似策略,可以大大节省工程费用,方便维护管理。
1.8 系统构成及其布局
根据工艺特点和控制要求,本系统采用分布式集散监控系统,按流程设两个PLC分站,分别监控水区和泥区的设备运行和控制,设一个总站集中分站信息并控制分站工作。具体控制分为:
(1) 现场控制,设现场箱或按钮站,由“现场/遥控”转换控制状态,“现场”设点动按钮,用于调整和检修。
(2) 各开关柜(包括:10kV进线柜、0.4kV进线柜等),由“自动/停止/手动”转换控制状态,“手动”设启/停按钮,用于手动操作。
(3) 分站控制,用可编程控制器和工业控制计算机系统等自控设备,自动监控所属范围运行。
(4) 总站主机控制,多为计算机监控管理系统,集中分站信息,进行各种处理,并通过分站统一控制全厂运行,满足工艺测控要求,使全厂运行处于最佳状态,是监控管理的中心。
监控系统由操作员工作站、服务器工作站、投影仪、打印机、2个PLC工作站和现场一次设备。通信网络采用西门子的过程现场总线标准(Profibus),它为分布式I/O站或驱动器等现场器件提供了高速通信所需的用户接口,以及提供了在主站间大量数据内部交换的接口通信协议采用SINEC L2,该协议遵从DIN19245标准。L2-DP适用于对时间要求严格的现场,能够以最快的速度快速处理和传送网络数据。所以本系统可以快速的采集和处理由PLC所采集的数据,符合控制系统要求的快速性。
10
污水处理系统电气控制系统设计
第2章 污水处理中的PLC
2.1 概述
2.1.1 设计范围
设计包括厂界内预处理、生物滤池、污泥处理及附属设施需要检测和控制应提供的仪表和有关的辅助装置等。 2.1.2 PLC设计综述
实用性:PLC系统其目的在于满足污水厂生产控制和管理要求,在保证先进的条件下,设备和系统应符合实际要求。
可靠性:污水处理厂的生产过程要求PLC控制系统具有连续可靠性。
经济性:PLC系统的技术含量高,设备复杂,因此,在设计时应进行技术经济比较。
先进性:网络技术、信息技术、PLC控制技术发展迅速。
根据某污水处理厂的设计规模和BAF生物滤池工艺的特点,本着技术先进,性价比高,适用可靠的原则进行设计。依据集中监测为主,分散控制为辅的基本原则,设计采用以PLC(可编程控制器)为基础的监测控制和数据采集系统,在中央控制室利用PC(工业级PC)对厂内各工况进行实时监控,并有信号报警和联锁等设施以保证生产正常运行,生产的工艺过程PLC采用就地独立控制。从安全生产的角度和操作人员技术掌握程度上考虑,设立三级控制层:设备就地手动、PLC子站现场监控和中控室远程监控如图2-1所示。
在综合楼设立中央控制室,下设2#预处理PLC子站,3#BAF生物滤池PLC子站和4#污泥处理PLC子站等共7个现场处理子站。在中央控制时可对主要设备实施开、停控制。同时,设备运转状态也通过通讯总线送入上位计算机,在计算机上对全厂设备运转情况进行监控。
中央控制室还设置了以太网交换器,与厂级管理PLC成以太信息网络相连接,并设置厂长办公终端、生产管理终端、化验室终端。
11
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库污水处理系统电气控制系统设计-毕设论文(3)在线全文阅读。
相关推荐: