第九章 第八节 空间向量及其运算(B)
题组一
空间向量的线性运算 1.如图所示,已知四面体ABCD,E、F、G、H分别为 ?????????1???AB、BC、CD、AC的中点,则(AB+BC+CD)化简
2的结果为 ( )
A.BF B.EH
???????? C.HG D.FG
?????????????????1???1????1????1????解析:(AB+BC+CD)=(AC+CD)=AD=·2HG=HG.
2222答案:C
2.如图,在底面ABCD为平行四边形的四棱柱
ABCD-A1B1C1D1中,M是AC与BD的交点,
??????????????若AB=a,A1D1=b,A1A1=c,则下列向 ?????量中与B1M相等的向量是 ( )
????????1111
A.-a+b+c B.a+b+c
22221111
C.a-b+c D.-a-b+c 2222解析:由题意,根据向量运算的几何运算法则,
????????????????1???B1M=B1B+BM=c+BD
2
????1????11
=c+(AD-AB)=-a+b+c.
222
答案:A
题组二 空间中的共线、共面问题 3.已知e1,e2,e3为不共面向量,若a=e1+e2+e3,b=e1-e2+e3,c=e1+e2-e3, d=e1+2e2+3e3,且d=xa+yb+zc,则x,y,z分别是________.
解析:由d=xa+yb+zc可得e1+2e2+3e3=(x+y+z)e1+(x-y+z)e2+(x+y-z)e3,
1
?x+y+z=1,?x,所以?
?x-y+z=2,
解之得?
=52??
?x+y-z=3,
?y=-1?2
,z=-1.
答案:51
2,-2
,-1
4.在棱长为1的正方体ABCD-A1B1C1D1中,BD1交平面ACB1于点E.求证:
(1)BD1⊥平面ACB1; (2)BE=1
2
ED1.
??????????????????????解:(1)∵BD????????1=BC+CD+DD1,AC=AB+BC,
∴??????????????????????????BD1·AC=(BC+CD+DD1)·(????????????????????AB+BC)=BC·BC+CD·AB= ????????BC·BC-????????????AB·AB=|BC|2-|????AB|2
=1-1=0,
∴BD1⊥AC.
同理可证BD1⊥AB1,又AC∩AB1=A,于是BD1⊥平面ACB1.
(2)如图,设底面正方形的对角线AC、BD交于点M,设向量????????AB=a,AD=b,?????AA1=c,
则?????=1???????2(?BMAD-AB)=1
2
(b-a),
?????则BM=??????????1BM-BB1
=1
2
(b-a)-c, ?????BD1=b+c-a.
?????设????BE=λBD1=λ(b+c-a),
则??????????????EM=BM-BE=12(b-a)-λ(b+c-a)=(-11
2+λ)a+(2
-λ)b-λc,
由B,E,M共线可知,存在实数t,使得??????????1EM=tB1M
?-12+λ=-1
2
t,即(-12+λ)a+(11
?2-λ)b-λc=2
t(b-a)-tc,故?1
1?-λ=t,?22λ=t,
解之得λ=t=1
3
.
故BE=13BDBE=1
1,所以2ED1.
2
题组三
5.如图所示,已知空间四边形的每条边和对角线长都等于a,点 E、F、G分别为AB、AD、DC的中点,则a2等于( )
????????A.2BA·BC B.2AD·BD
????????C.2FG·CA
????????D.2EF·CB
????????????????ππ22解析:〈AD,BD〉=,∴2AD·BD=2a×cos=a.
????????空间向量数量积及应用 33
答案:B
6.二面角α-l-β为60°,A、B是棱l上的两点, AC、BD分别在半平面α、β内, AC⊥l,BD⊥l, 且AB=AC=α,BD=2a,则CD的长为 ( ) A.2a B.5a C.a D.3a 解析:∵AC⊥l,BD⊥l,
????????????????????????∴〈AC,BD〉=60°,且AC·BA=0,AB·BD=0, ????????????????∴CD=CA+AB+BD, ????????????????2∴|CD|=(CA?AB?BD)
=a2+a2+(2a)2+2a·2acos120°=2a. 答案:A
7.已知向量a与b的夹角为120°,且|a|=|b|=4,那么b·(2a+b)的值为________.
解析:a·b=|a||b|cos〈a,b〉 =4×4×cos120°=-8,
∴b·(2a+b)=2a·b+b2=2×(-8)+42=0. 答案:0
8.如图,平行六面体ABCD-A1B1C1D1中, 以顶点A为端点的三条棱长都为1,且 两夹角为60°. (1)求AC1的长;
(2)求BD1与AC夹角的余弦值.
?????????????解:设AB=a,AD=b,AA1=c,则两两夹角为60°,且模均为1.
3
(1)??????????????ACC+CC?????????????1=A1=AB+AD+AA1=a+b+c. ∴|?????AC21|=(a+b+ c)2=|a|2+|b|2+|c|2+2a·b+2b·c+2a·c
=3+6×1×1×1
2
=6,
∴|?????AC1|=6,即AC1的长为6. (2)??????????BD?????????????????1=BD+DD1=AD-AB+AA1=b-a+c. ?????????∴BD1·AC=(b-a+c)·
(a+b) =a·b-a2+a·c+b2-a·b+b·c =1.
|?????BD1|=(b-a+c)2=2,|AC―→|=(a+b)2=3,
∴cos〈??????????????????BDAC〉=????BD?1?A???C?=
1=61,. BDAC2×361?∴BD61与AC夹角的余弦值为6
. 题组四 空间向量及其运算的综合 9.如图,在正方体ABCD-A1B1C1D1中,棱长为a, M、N分别为A1B和AC上的点, A1M=AN=
2a3
, 则MN与平面BB1C1C的位置关系是 ( ) A.相交 B.平行 C.垂直 D.不能确定 解析:∵正方体棱长为a,A2a1M=AN=
3
, ????=2?????????∴MB3
A2????1B,CN=3
CA,
?????????∴?????????MB+BC+CN=2????????3A2????MN=1B+BC+3
CA
?????????=2?????3(A2????????1B1+B1B)+BC+3
(CD+DA) ?=2????3B1?????1B+3B1C1. ????又∵CD是平面B1BCC1的法向量,
且??????????MN·
CD=(2????1?????????3B1B+3B1C1)·CD=0, ????∴?????MN⊥CD,
4
∴MN∥平面B1BCC1. 答案:B
10.如图,在梯形ABCD中,AB∥CD,∠ADC=90°, 3AD=DC=3,AB=2,E是DC上的点,且满足 DE=1,连结AE,将△DAE沿AE折起到△D1AE 的位置,使得∠D1AB=60°,设AC与BE的交点为O.
(1)试用基向量??????????????????AB,AE,AD1表示向量OD1;
(2)求异面直线OD1与AE所成角的余弦值;
(3)判断平面D1AE与平面ABCE是否垂直?并说明理由. 解:(1)∵AB∥CE,AB=CE=2,
∴四边形ABCE是平行四边形,∴O为BE的中点. ??????????????∴?????ODD1????????1=A1-AO=AD1-2
(AB+AE)
=?????AD1????1????1-2AB-2
AE.
(2)设异面直线OD1与AE所成的角为θ,
?????则cosθ=|cos〈OD?????????????|????OD?1?A???E1,AE〉|=?|,
OD1?AE?????∵OD?????????1????1????????1·AE=(AD1-2AB-2
AE)·AE
?????=AD????1????????1????AE-2AB·AE-2
|AE|2
1·
=1×2×cos45°-12×2×2×cos45°-12×(2)2
=-1,
??????????|OD1|=
(AD1????261?2AE)=2,
?????????∴cosθ=|????OD?1?A???E?|=|
-1|=3. OD1?AE62
×23故异面直线OD1与AE所成角的余弦值为33
. (3)平面D1AE⊥平面ABCE.证明如下:
???????????取AE的中点M,则D?????1?????????1M=AM-AD1=2
AE-AD1,???????????∴D????1????????1M·AE=(2
AE-AD1)·AE
5
=12
|????|-?AD????AE2????1·AE =1
2×(2)2-1×2×cos45°=0. ∴??????D????1M⊥AE.∴D1M⊥AE.
??????∵?????DM·????AB=(1????????12AE-AD1)·AB =1?????????????????2
AE·AB-AD1·AB =1
2×2×2×cos45°-1×2×cos60°=0,??????∴D????1M⊥AB,∴D1M⊥AB.
又AE∩AB=A,AE、AB?平面ABCE, ∴D1M⊥平面ABCE. ∵D1M?平面D1AE, ∴平面D1AE⊥平面ABCE. 6
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库第九章 第八节 空间向量及其运算(B)在线全文阅读。
相关推荐: