列,例如,取b1=1, d′=2,那么,n项数列1,1+2,1+22,??,1?(n?1)2满足要求。
20.【解析】本小题考查充要条件、指数函数与绝对值函数、不等式的综合运用. (Ⅰ)f?x??f1?x?恒成立?f1?x??f2?x??3x?p1?2?3x?p2?3x?p1?x?p2?3log32
?x?p1?x?p2?log32(*)
因为x?p1?x?p2??x?p1???x?p2??p1?p2 所以,故只需p1?p2?log32(*)恒成立
综上所述,f?x??f1?x?对所有实数成立的充要条件是:p1?p2?log32
(Ⅱ)1°如果p1?p2?log32,则的图像关于直线x?p1对称.因为f?a??f?b?,所以区间
?a,b?关于直线x?p1 对称.
因为减区间为?a,p1?,增区间为?p1,b?,所以单调增区间的长度和为2°如果p1?p2?log32.
x?p?log2x?p???31,x??p1,b??323,x??p2,b?(1)当p1?p2?log32时.f1?x???p?x,f2?x???p?x?log2
231,x??a,p2????3,x??a,p1??3b?a 2f1?x?当x??p1,b?,?3p2?p1?log32?30?1,因为f1?x??0,f2?x??0,所以f1?x??f2?x?,
f2?x?故f?x??f1?x?=3当x??a,p2?,
x?p1
f1?x??3p1?p2?log32?30?1,因为f1?x??0,f2?x??0,所以f1?x??f2?x? f2?x?p2?x?log32故f?x??f2?x?=3
因为f?a??f?b?,所以3b?p1?3p2?a?log32,所以b?p1?p2?a?log32,即
a?b?p1?p2?log32
第 11 页 共 12 页
当x??p2,p1?时,令f1?x??f2?x?,则3当x??p2,p1?x?3x?p2?log32,所以x?p1?p2?log32,
2??p1?p2?log32?x?p2?log323时,,所以= fx?fxfx?fx????????122?2??p?p2?log32?x??1,p1?时,f1?x??f2?x?,所以f?x??f1?x?=3p1?x
2??f?x?在区间?a,b?上的单调增区间的长度和b?p1?=b?p1?p2?log32?p2
2p1?p2?log32a?bb?a?b??
222x?p?log2x?p???31,x??p1,b??323,x??p2,b?(2)当p2?p1?log32时.f1?x???p?x,f2?x???p?x?log2
2313,x?a,p3,x?a,p?1??2?????当x??p2,b?,
f1?x??3p2?p1?log32?30?1,因为f1?x??0,f2?x??0,所以f1?x??f2?x?, f2?x?x?p2?log32故f?x??f2?x?=3当x??a,p1?,
f1?x??3p1?p2?log32?30?1,因为f1?x??0,f2?x??0,所以f1?x??f2?x? f2?x?p1?x故f?x??f1?x?=3
p1?a因为f?a??f?b?,所以3?3b?p2?log32,所以a?b?p1?p2?log32
x?p1当x??p1,p2?时,令f1?x??f2?x?,则3当x??p1,?3p2?x?log32,所以x?p1?p2?log32,
2??p1?p2?log32?x?p13时, ,所以= fx?fxfx?fx????????121?2??p?p2?log32?x??1,p1?时,f1?x??f2?x?,所以f?x??f2?x?=3p2?x?log32
2??f?x?在区间?a,b?上的单调增区间的长度和b?p2?=b?p1?p2?log32?p1
2p1?p2?log32a?bb?a?b??
222b?a 2综上得f?x?在区间?a,b?上的单调增区间的长度和为
第 12 页 共 12 页
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2008年江苏高考数学试题及参考答案(详解详析版)(3)在线全文阅读。
相关推荐: