南昌航空大学课程设计
2.2.2、汽包水位在蒸汽流量的作用下的动态特性
汽包水位在蒸汽流量扰动的动态特性可以用下面式子表示:
(2-6)
在其它条件不变的情况下,蒸汽用量突然增加,瞬时间必然会导致汽包压力下降,汽包内水的沸腾突然加剧,水中气泡迅速增加,气泡体积增大,使汽包水位升高(水量实际上在减少)。这种压力下降而非水量增加导致的汽包水位上升的现象成为“虚假水位”现象,图2.2给出了在蒸汽流量扰动作用下,汽包水位的阶跃响应曲线。
图2.2 蒸汽流量阶跃扰动作用下的汽包水位相应曲线
当蒸汽流量D突然增加?D时,从锅炉的物料平衡关系来看,蒸汽大于给水量,水位应下降,如图曲线?H1,实际上,由于蒸汽流量的增加瞬时间必然导致汽包压力下降。汽包内的沸腾突然增加,水中气泡迅速增加,由于气泡的体积增加使水位的响应曲线如图中?H2,而实际显示的水位曲线应该是?H为?H2和?H1的叠加,即?H??H1??H2。从图中可以看出蒸汽用量增加,在开始阶段水位不会下降反而会先上升,然后再下降,这个现象称为“虚假水位”蒸汽扰动时。水位的变化
7
南昌航空大学课程设计
的动态特性用传递函数表示为:
(2-7)
式中?f为蒸汽流量变化的单位流量时水位的变化速度,K2为响应曲线?H2的放大倍数,T2为响应曲线的?H2时间常数。
造成虚假液位的原因:一是锅炉蒸汽负荷增加使炉管和汽包中汽水混合物的汽水比例发生变化(汽容积增加)而引起汽包水位上升,这是引起汽包虚假液位的主要原因。二是蒸汽流量增加,汽包气压下降,泸水沸点下降,由于锅炉水位饱和水的汽化,是汽包水位随压力下降而升高。
虚假水位变化的大小与锅炉的工作压力和蒸发量有关。一般蒸发量为100—230t/h的高压锅炉中,当负荷变化10%时,假水位可以达到30—40mm.所以克服虚假水位现象带来调节的误动作变得很有必要。
查阅一个实例的汽包水位在蒸汽流量作用下的动态数学模型:
(2-8)
2.3、汽包水位控制方案
按照此次课设的方案是前馈—反馈控制系统的设计。所以双冲量控制系统以锅炉汽包水位测量信号作为主控信号,以蒸汽流量信号作为前馈信号构成的“前馈—反馈控制系统”。
汽包水位的主要扰动是蒸汽流量的变化,如果系统除了汽包水位控制外,还能利用蒸汽流量变化对水流量进行补偿控制,就可以消除或减小虚假水位现象对汽包水位的影响,而且使给水调节阀的调节及时,这就构成了前馈-反馈双冲量控制系统,如图2.3所示。双冲量控制系统实质是一个前馈控制(蒸汽流量)加单回路反馈控制的前馈-反馈控制系统,当蒸汽流量变化时,调节阀及时按照蒸汽流量的变化变化进行给水流量补偿,而其他干扰对水位的影响由反馈控制回路克服。
8
南昌航空大学课程设计
图2.3双冲量控制系统框图
途中加法器将控制器的输出信号和蒸汽流量变送器的信号求和后,控制调节阀的开度,调节给水量。当蒸汽流量变化时,通过前馈补偿直接控制给水调节阀。使汽包进出水量不受虚假水位的影响而及时达到平衡,这样就克服了由于蒸汽流量变换引起假水位变化所造成的汽包水位剧烈波动。 引入蒸汽流量来校正不仅可以补偿“虚假水位”所引起的误动作,而且还能是给水调节阀的动作及时从而提高控制质量。但这里的前馈仅为静态前馈,如果要考虑两条通道在动态上的差异则还需要引入动态补偿环节。在给水量压力比较平稳时,采用双重量控制就能够达到控制要求。
9
南昌航空大学课程设计
3、参数整定
3.1、PID参数整定
3.1.1、PID各环节对系统控制的作用
在工程实际中,应用最为广泛的调节器控制规律为PID控制,即比例积分微分控制。PID控制器是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 (1)比例(P)控制
比例环节实时地按照一定比例反映系统的偏差量 ,即一旦偏差出现,控制器立即产生控制作用,以减小偏差。比例系数Kp越大,系统的调整时间就越短,稳态误差也越小,
但Kp过大,会造成超调量过大,引起系统不稳定 (2)积分(I)控制
积分环节消除系统的稳态误差,提高系统的无差度。积分系数Ki越大,积分作用越强,稳态误差越小,调整时间越短,但Ki大,会造成稳定性变差.
(3)微分(D)控制
微分环节能起到超前控制的作用,即在按照偏差变化的速度进行控制,能在偏差很小的时,提前增大控制作用,改善控制品质。通常,微分系数Kd大,系统超调量减小,但Kd大,也会造成系统稳定性下降。
3.1.2、PID参数整定方法
PID调节是比例积分微分调节规律的线性组合,它吸取了比例调节反应快速、积分调节能消除静态误差以及微分调节提前预见性的特点,是一种比较理想的微分调节规律。
简单控制系统的控制品质,与被控过程的特性、干扰信号的形式和大小、控制方案及调节参数等因数密切相关。一旦控制方案确定,受工艺条件和设
10
南昌航空大学课程设计
备特性限制的广义对象特性、干扰特性等因数就完全确定,不可随意改变。这是控制系统的品质完全取决于调节器的参数整定。
简单控制系统参数的参数整定,就是通过一定的方法和步骤,确定系统出于最佳过渡控制过程时,调节器的比例度P、积分时间Ti、稳份时间Td的具体参数。
所谓的最佳参数整定,就是在某种评价指标下,系统达到最佳控制状态时,调节器的调节规律所对应的一组参数。对于单回路控制系统,较为通用的标准是所谓的“典型最佳调节过程”,即在控制系统的阶跃扰动下,被控参数的过渡过程呈4:1(10:1)的衰减振荡过程。
控制器参数整定的方法很多,主要有两大类,一类是理论计算的方法,另一类是工程整定法。
理论计算的方法是根据已知的各环节特性及控制质量的要求,通过理论计算出控制器的最佳参数。这种方法由于比较繁琐、工作量大,计算结果有时与实际情况不甚符合,故在工程实践中长期没有得到推广和应用。
工程整定法是在已经投运的实际控制系统中,通过试验或探索,来确定控制器的最佳参数。这种方法是工艺技术人员在现场经常使用的。常用的工程整定方法有稳定边界法、衰减曲线法、反应曲线法、经验法。
3.2、系统仿真 3.2.1、系统辨识
前馈—反馈控制系统方框图如图3-1所示:
11
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库本科毕业设计论文--过程控制课程设计前馈反馈控制系统仿真论文(3)在线全文阅读。
相关推荐: