?GF?A1D。
(2)易知A1F?DE,且A1F?GF,以F 为原点,FG,FE,FA1分别为x轴,y轴,z
轴的正向,建立如图的空间直角坐标系。 易知A1F?FG?AzA13FEDD,则 BF2EG?3??1?CF?0,0,0?,G?0,,0?, BGx?2,0,0??,E?y???2?C???????3??3A1??0,0,2??,B??2,1,0??,GB??0,1,0?,设平面A1EG的一个法向量为n??x,y,z?, ??????????33??????13?AG?,0,?,AE?0,,?, ????11?2???2?2???2?33??????x?z?0???x?z?0?n?AG??221由??????,令z?1,则y?3,x?1, ??????n?A1E?0?y?3z?1y?3z?0???22??????GB?n15?n?1,3,1,?点B到平面A1EG的距离d???。
5n??20.(1)证明:由于BC?AB,AO?平面ABC,BC?平面ABC,?BC?AO11,而
AB?平面ABB1A1,AO?BC?平面ABB1A1,又BC? AB?AO?平面ABB1A1,1=O,1平面BCC1B1,?平面ABB1A1?平面BCC1B1。
(2)解:以O为原点,OB,BC,OA1分别为x轴,y轴,z轴的正向,建立如图的空间直角坐
??zn?x,y,z设平面A的一个法向量为, AC??11????????A1AA1?1,0,3,AC??2,2,0?,
??????????n1?AA1?0?x?3z?0?x??3zB1????由??????, ????n1?AC?0?2x?2y?0?x?y?0???令z?1,则y?3,x??3,?n1??3,3,1, ???A又设平面A的一个法向量为, BCn?x,y,z??112?????????OA1B1??2,0,0?,AC?1,2,?3, 1B?????????2x?0??x?0x?n2?A1B1?0??x?0??由???,,令, z?2,y?3????????0?x?2y?3z?0?2y?3z????n2?AC1????????n1?n25?n2?0,3,2,设二面角为?,则cos????????,易知二面角为钝角,
7n1n2标系,则O?0,0,0?,B?1,0,0?,A??1,0,0?,C?1,2,0?,A10,0,3,B12,0,3, ??????C1y??C?????cos???5。 7y21.解:(1)由于kAB?tan?3nC?3,?直线n:y?3x, OA?p3p?p23p2?A???2,?2??,?OA?4?4?p,而
??OA?OB?2,?p?2,?抛物线C:y2?4x;
取OB中点O1,连接O1M,则O1M?OB,?OO1?1,
O1BMFxl?OM?2,?M?2,0?,??M:?x?2??y2?4。
2综上,?M:?x?2??y?4;抛物线C:y2?4x。
22(2)易知D,G在x轴的异侧,设DG:x?my?n(n?0),由??x?my?n消去x得: 2?y?4x?y?y?4m, y2?(4my?n)?y2?4my?4n?0,设D?x1,y1?,G?x2,y2?,??12?y1y2??4ny2y1y2而E??1,y1?,O?0,0?,由E,O,G三点共线有:?,而x2?,
4?1x2y4??y1?2??y1y2??4,?n?1,?直线DG:x?my?1,?直线DG必过定点
y2y24F?1,0?。
22.解:(1)设曲线C上任意一点?x,y?,则?x,2y?为?O:x2?y2?4上的点,
x2x22?x?4y?4??y?1,?曲线C:?y2?1。
4422(2)①易知直线AB的斜率k存在,设AB:y?kx?m,
?y?kx?mx22?2222??kx?m?1?4k?1x?8kmx?4m?1??0, ??????x24??y?1?4?=?8km??16?4k2?1??m2?1??0,?4k2?m2?1?0,即m2?4k2?1,
2因为SABF1F2?S?ABO?SBF1O?SAF2O,设点O到直线AB:kx?y?m?0的距离为d,
m2则d?,?AB?2OA?d?24?2,
2k?1k?122m?S?ABOmm1m2m2??24?2??4?2??222k?1k?1k?1k?1?4k2?4?m2?m2k2?1?3mk2?1, 由??y?kx?m?x2?y2?4?x2??kx?m?2?4??k2?1?x2?2kmx?m2?4?0, ????x1?x2km2???k2?1?m2?, ??x1x42?k2?1?yy?2km?2m1+2?kx1?m?kx2?m?k?x1?x2??2m?k???k2?1???2m?k2?1, ?SAF2O?S?12?3y1333mBF1O1?2?3y2?2?y1?y2??2y1?y2?k2?1,?SABF1F2?S?ABO??SBF1O?SAF2O?=3m3m2k2?1?3mk2?1?k2?1 而m2?4k2?1,k2=m2?14,易知k2?0,?m2?1,?m?1,
?S?23m83m8383ABF1F2m2?1?m2?3???44?1m?323m=?m=3m?m2?3?m??3, ??SABF1F2?max?4。
② 1)当直线AB的斜率k?0时,验证有AB?BF1;
2)当直线AB的斜率k?0时,则AF2,BF1的斜率都存在, 设ky1AF2?k1?x,ky2BF1?k2?,
1?3x2?3?ky1y2y1?x2?3?y2x1?31?k2?x3?x3???x???3??
1?2?1?3x2???kx1?m??x2?3??kx2?m?x1?3????1?x2??m?x1?x2??23mx1?3??x2?3??3k?xx1x2?3?x1?x2??3
,
?3k?x1?x2??mx1?x2?23mx1x2?3x1?x2?3
x1?x2??x1?x2?2?4x1x2?4k2m2?k2?1?2?4?m2?4?k2?1?24k2?m2?4?k2?1?2?23, k2?1?23k2m233k?x1?x2??mx1?x2?23m??m?23m?0,?k1?k2, 22k?1k?1k1?k2?2k2??2kx1x2?3k?x1?x2??m?x1?x2?y1y2?2k???2 2m?3k?1x1?3x2?3x1x2?3?x1?x2??3?2k21???k??,?k2k??1,?BF1?AB。 ,24k2?1?3k2?1kk综上知:AB?BF1。
??PBF1的外接圆圆心O1即为PF1的中点,
而O1O?PF1PF111PF2??2a?PF1??a??2??r1?r2,??O1与?O内切。
中位线2定义222
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库高二数学上学期期末考试试题理(2)在线全文阅读。
相关推荐: