pR211??M?Q0?0023Et2?D?2?D?pR22M0?2?D?Et6边缘内力表达式 ○
11M0?Q0?02?D?2?D?
pR23Qo??4?D?EtNx?04?4R3D?p??xN???e?sin?x?cos?x???pRe??x?sin?x?cos?x?Et?2R2D?p??xMx??2e?sin?x?cos?x?Et
M???Mx4?3R2D?p??xQx??ecos?xEt7边缘内力引起的应力表达式 ○
Nx12Mx24?2R2D?p??x?x??z??e?sin?x?cos?x?z34ttEt?N?12M?pR??x?24?2RD????x??????????esin?x?cos?x?esin?x?cos?xz??3ttt3Et???z?06Q?x?3xt322??t2??24?RDpt22???x???z?ecos?x4?4?z??????Et???4?
8综合应力表达式 ○
pRNx12MxpR24?2R2D?p??x??x?2t?t?t3z?2t?Et4e?sin?x?cos?x?zpRN?12M?????t?t?t3??pR?24?2RD????x??x??e?sin?x?cos?x?z???1?e??sin?x?cos?x??3t?Et??? ??z?06Qx??x?t3?t224?3R2D?p?t22?2???x????z?ecos?x4?4?z?????Et???4? 11
6. 两根几何尺寸相同,材料不同的钢管对接焊如图所示。管道的操作压力为p,操作温度为0,环境温度为tc,而材料的弹性模量E相等,线膨胀系数分别α1和α2,管道半径为r,厚度为t,试求得焊接处的不连续应力(不计焊缝余高)。
解:○
1内压和温差作用下管子1的挠度和转角 内压引起的周向应变为:
?p?2??r?wp1??2?r1?prpr??2?r?E??t??2?wppr2t?1??2Et?2??? 温差引起的周向应变为:
??t??2??r?w?t??r?t1?22?r??w1r??1?t0?tc???1?tw?t1??r?1?twp??t??pr212Et?2????r?1?t 转角:
?p??t1?0
○
2内压和温差作用下管子2的挠度和转角 内压引起的周向应变为:
?p?2??r?wp2??2?r1?prpr??2?r?E??t??2?wppr2t?2??2Et?2??? 温差引起的周向应变为:
??t??2??r?w?t??r?t2?22?r??w2r??2?t0?tc???2?tw?t2??r?2?t2wp??t??pr22Et?2????r?2?t 转角:
?p??t2?0
○
3边缘力和边缘边矩作用下圆柱壳1的挠度和转角 wM01??1Q012?2D?M0w1?2?3D?Q0?M01??1Q0?D?M0?1?1 2?2D?Q0○
4边缘力和边缘边矩作用下圆柱壳2的挠度和转角 12
w2M0??12?5变形协调条件 ○
2M02?D?1?M0?D?M00wQ??213?2Q02?D?1?Q022?D?Q0
Q0Q0M0w1p??t?w1?w1M0?w2p??t?w2?w2?p??t1??Q01??M01??p??t2??Q02??M02
6求解边缘力和边缘边矩 ○
pr211pr21?2????r?1?t?2M0?3Q0???2????r?2?t?1?M?Q002Et2Et2?D?2?D?2?2D?2?3D?1111?M0?Q?M?Q0?D??D?02?2D?02?2D?M0?0Qo?r?3D??t0?tc???1??2?7边缘内力表达式 ○
Nx?0Et??xN??e?t0?tc???1??2?cos?x2Mx?r?2D?e??x?t0?tc???1??2?sin?xM???MxQx?r?3D?e??x?t0?tc???1??2??cos?x?sin?x?8边缘内力引起的应力表达式 ○
Nx12Mx12z2??x??t0?tc???1??2?sin?x?x??z??r?De33tttN?12M?12z?E???x2?????????z?et?t???cos?x??r?Dsin?x??0c1233ttt?2??z?06Q?x?3xt2?t2??6rt22?3??x??????t0?tc???1??2??cos?x?sin?x??z??z?De?4?t3?4?????
9综合应力表达式 ○
13
pr???x2t?pr????t?Nx12Mx?z?3ttN?12M??z?tt3pr12z2?3r?D?e??x?t0?tc???1??2?sin?x2ttpr12z?E???x?????et0?tc?1??2?cos?x?3?r?2D?sin?x?tt?2???z?0?t26r?t22?2?3??x??????t0?tc???1??2??cos?x?sin?x??z??z?De?4?t3?4?????
6Qx??x?t37. 一单层厚壁圆筒,承受内压力pi=36MPa时,测得(用千分表)筒体外表面的径向位移w0=0.365mm,圆筒外直径D0=980mm,E=2×105MPa,μ=0.3。试求圆筒内外壁面应力值。 解:周向应变
???物理方程
?r?w?d??rd?rd??wrw?r??
???1???????r??z??Ew?r???r???????r??z?? E仅承受内压时的Lamè公式
22??piRi2?R0pi?R0?????r?21??1?2?22??R0?Ri2?rK?1r????22??piRi2?R0pi?R0???? ???21??1?2?2?22??R0?Ri?r?K?1?r?piRi2pi?z?2?R0?Ri2K2?1在外壁面处的位移量及内径:
wr?R0?piR0?2????w02EK?1??K?1?Ri?内壁面处的应力值:
piR0?2????1?36?4905??2?0.3??1.188 Ew02?10?0.365R0490??412.538mmK1.188?r??pi??36MPapi1.1882?12???21?K?36??211.036MPa
K?11.1882?1p36?z?2i??87.518MPa2K?11.188?1??外壁面处的应力值:
14
?r?02pi2?36??175.036MPa
K2?11.1882?1p36?z?2i??87.518MPa2K?11.188?1???8. 有一超高压管道,其外直径为78mm,内直径为34mm,承受内压力300MPa,操作温度下材料的 σb=1000MPa,σs=900MPa。此管道经自增强处理,试求出最佳自增强处理压力。
解:最佳自增强处理压力应该对应经自增强处理后的管道,在题给工作和结构条件下,其最大应力取最小值时对应的塑性区半径Rc情况下的自增强处理压力。对应该塑性区半径Rc的周向应力为最大拉伸应力,其值应为经自增强处理后的残余应力与内压力共同作用下的周向应力之和:
????s??R0???1????R3?c???22??Ri2??Rc?????R???R2?R2?0i????0???Rc?1???R???02?Rc??piRi2????2lnR???R2?R2i???0i????R?2?0?1???R??? ???c???令其一阶导数等于0,求其驻点
22??????2?sR0RRi2?c?????23????RcR0?Ri23Rc??R0????Rc?1???R???02?Rc??????2ln???Ri?????2?s??R0?1???R3???c????2??Ri2?Rc??2?22RR?R??0i??0
22?Rc1???2piRiR0?0?2????223RRR?RRc??0ic?0?解得:Rc=21.015mm。根据残余应力和拉美公式可知,该值对应周向应力取最大值时的塑性区半径。
由自增强内压pi与所对应塑性区与弹性区交界半径Rc的关系,最佳自增强处理压力为:
pi??S?R02?Rc2?3??2RoR?2lncRi???589.083MPa ??9. 承受横向均布载荷的圆平板,当其厚度为一定时,试证明板承受的总载荷为一与半径无关的定值。
1周边固支情况下的最大弯曲应力为 证明:○
?max2周边简支情况下的最大弯曲应力为: ○
3pR23p?R23P???
4t24?t24?t2???max3?3???pR23?3???p?R23?3???P??? 2228t8?t8?t??10. 有一周边固支的圆板,半径R=500mm,板厚=38mm,板面上承受横向均布载荷p=3MPa,试求板的最5
大挠度和应力(取板材的E=2×10MPa,μ=0.3) 解:板的最大挠度:
Et32?105?3839D????1.005?10121??212?1?0.32????fwmax?pR3?500??2.915mm64D?64?1.005?10944
15
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库过程设备设计 第三版(郑津洋) 习题题解(3)在线全文阅读。
相关推荐: