∵ 0?C??,??6?2C??6?11????,∴ 2C??,∴ C?. 6623???∵ m与n共线,∴ sinB?2sinA?0.
由正弦定理
ab?, 得b?2a, ① sinAsiBn22∵ c?3,由余弦定理,得9?a?b?2abcos?3, ②
解方程组①②,得?20.(1)??a?3.
?b?234 5(2)解法一:取AB中点为D,AC中点为E。 则
????????????????????????????????????????CO?AB?BO?CA?CD?DO?AB?BE?EO?CA????????????????????1????????????????1?????????????????CD?AB?BE?CA?CB?CA?CB?CA?BA?BC?BA?BC?22????2????2????2????2?CB?CA?BA?BC?a2?b2?c2?a2????????解法二:
b2?c2=2 a2????????????????????????????????????????CO?AB?BO?CA?OC?OB?OA?OB?OA?OC????22
?2Rcos2A?Rcos2B?Rcos2B?2sinA?sinB?sinCb2?c2=2 ?2a21. 解:(Ⅰ)f(x)的定义域为(0,??),且f'(x)?2222x?a, 2x①当a?0时,f'(x)?0,f(x)在(0,??)上单调递增; ②当a?0时,由f'(x)?0,得x??a;由f'(x)?0,得x??a;
故f(x)在(0,?a)上单调递减,在(?a,??)上单调递增. (Ⅱ)g(x)?ax?a?5lnx,g(x)的定义域为(0,??) xa5ax2?5x?ag'(x)?a?2?? 2xxx因为g(x)在其定义域内为增函数,所以?x?(0,??),g'(x)?0
?ax2?5x?a?0?a(x2?1)?5x?a?而
5x?5x? ?a?22??x?1?x?1?max5x55,当且仅当x?1时取等号, ??21x?1x?2x5所以a?
22x2?5x?22(Ⅲ)当a?2时,g(x)?2x??5lnx,g'(x)?
xx2由g'(x)?0得x?1或x?2 212当x?(0,)时,g'(x)?0;当x?(,1)时,g'(x)?0.
所以在(0,1)上,g(x)max?g()??3?5ln2 而“?x1?(0,1),?x2?[1,2],总有g(x1)?h(x2)成立”等价于 “g(x)在(0,1)上的最大值不小于h(x)在[1,2]上的最大值” 而h(x)在[1,2]上的最大值为max{h(1),h(2)}
1212?1g()?h(1)??2所以有?
1?g()?h(2)??2?m?8?5ln2??3?5ln2?5?m??m?8?5ln2 ????1m?(11?5ln2)??3?5ln2?8?2m?2?所以实数m的取值范围是[8?5ln2, ??)
22. 解:(1)f(x)?2x?11?,x??,? 2?x?1?22?f?(x)?2?1?x2??x2?1?2?11??0,?f(x)在?-,?上单调递增。?22?
11??44???f(x)??f(-),f()?=?-,?22??55??(2)f?(x)=2-x2+kx?1?x2?1?2
∵a,b是方程4x2?4kx?1?0(k?R)的两个不等实根
1?0的两根。(抛物线开口向下,两根之内的函数值必为正值) 412∵当x??a,b?,?x?kx??0,
42即是方程?x?kx?∴?x2?kx?1?0, ∴f?(x)=2-x2+kx?1?x2?1?2>0.
∴函数f(x)在其定义域[a,b]上是增函数
(3)由题意知:g(x)的值域是f(x)值域的子集。 由(1)知,f(x)的值域是?-,?,
55?44???g?(x)?3x2?3m2,g?(x)?0?x??m
x ? 1 2?1???,?m? ?2?+ 递增 -m ??m,m? - m 1 ?1??m,? 2?2?+ f?(x) 0 0 f(x) ?1?g??? ?2?极大值递减 g(-m) 极小值递增 g(m) ?1?g?? ?2???1?4?g?2??5???显然?,
?g??1???4???25???∴欲使g(x)的值域是f(x)值域的子集
4?g?m?????5只需?
4?g?m????5?解得:0?m?31 10
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库浙江省杭州高中2013届高三上学期第二次月考数学理试题(2)在线全文阅读。
相关推荐: