77范文网 - 专业文章范例文档资料分享平台

2017浙江高考空间向量与立体几何练习

来源:网络收集 时间:2019-01-10 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

空间向量与立体几何 两年高考真题演练

1.如图,

在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=5,且点M和N分别为B1C和D1D的中点.

(1)求证:MN∥平面ABCD; (2)求二面角D1-AC-B1的正弦值;

(3)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正1

弦值为3,求线段A1E的长.

2.

《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.

如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE、DF、BD、BE.

(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;

πDC

(2)若面DEF与面ABCD所成二面角的大小为3,求BC的值.

3.

如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD. (1)求证:AB⊥PD;

(2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面PBC与平面DPC夹角的余弦值.

考点25 空间向量与立体几何

一年模拟试题精练

1.已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.

2

(1)如图(1),若G为线段PD的中点,BE=DF=3,证明:PB∥平面EFG;

(2)如图(2),若E, F分别为线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下列两个条件,并说明理由.

(ⅰ)点H到点F的距离与点H到直线AB的距离之差大于4; (ⅱ)GH⊥PD.

2.如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边AB=t,(0

(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;

(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.

3.

如图,已知平行四边形ABCD与直角梯形ABEF所在的平面互相1

垂直,其中BE∥AF,AB⊥AF,AB=BE=2AF,BC=2AB,∠CBAπ

=4,P为DF的中点.

(1)求证:PE∥平面ABCD;

(2)求平面DEF与平面ABCD所成角(锐角)的余弦值.

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库2017浙江高考空间向量与立体几何练习在线全文阅读。

2017浙江高考空间向量与立体几何练习.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/420120.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: