考点: 规律型:图形的变化类。810360 专题: 规律型。
分析: 观察图形可知,黑色与白色的地砖的个数的和是连续奇数的平方,而黑色地砖比白色地砖多1个,求出第n个图案中的黑色与白色地砖的和,然后求出黑色地砖的块数,再把n=14代入进行计算即可.
解答: 解:第1个图案只有1块黑色地砖,
第2个图案有黑色与白色地砖共32=9,其中黑色的有5块, 第3个图案有黑色与白色地砖共52=25,其中黑色的有13块, …
第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有[(2n﹣1)2+1], 当n=14时,黑色地砖的块数有[(2×14﹣1)2+1]=×730=365.
故答案为:365.
点评: 本题是对图形变化规律的考查,观察图形找出黑色与白色地砖的总块数与图案序号之间的关系是解题的关键,还要注意奇数块地砖,一种比另一种多一块的求法. 14.(2012?山西)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 .
考点: 规律型:图形的变化类。810360
分析: 对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 解答: 解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n个就有阴影小三角形2+4(n﹣1)=4n﹣2个,
故答案为:4n﹣2(或2+4(n﹣1))
点评: 本题是一道找规律的题目,注意由特殊到一般的分析方法,此题的规律为:第n个就有正三角形4n﹣2个.这类题型在中考中经常出现. 15.(2012?三明)填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是 .
考点: 规律型:图形的变化类;规律型:数字的变化类。810360
分析: 根据已知数据即可得出,最下面一行数字变化规律,进而得出答案. 解答: 解:根据下面一行数字变化规律为: 1×4=4, 4×9=36, 9×16=144, 16×25=400, 25×36=a=900, 故答案为:900.
点评: 此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 16.(2012?青海)观察下列一组图形:
它们是按一定规律排列的,依照此规律,第n个图形中共有 个★.
考点: 规律型:图形的变化类。810360 专题: 规律型。
分析: 把五角星分成两部分,顶点处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中五角星的个数的关系式. 解答: 解:观察发现,第1个图形五角星的个数是:1+3=4, 第2个图形五角星的个数是:1+3×2=7, 第3个图形五角星的个数是:1+3×3=10, 第4个图形五角星的个数是:1+3×4=13, …
依此类推,第n个图形五角星的个数是:1+3×n=3n+1. 故答案为:3n+1.
点评: 本题考查了图形变化规律的问题,把五角星分成两部分进行考虑,并找出第n个图形五角星的个数的表达式是解题的关键. 17.(2012?黔东南州)如图,第(1)个图有2个相同的小正方形,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,…,按此规律,那么第(n)个图有 个相同的小正方形.
考点: 规律型:图形的变化类。810360 专题: 规律型。
分析: 观察不难发现,每一个图形中正方形的个数等于图形序号乘以比序号大1的数,根据此规律解答即可.
解答: 解:第(1)个图有2个相同的小正方形,2=1×2, 第(2)个图有6个相同的小正方形,6=2×3, 第(3)个图有12个相同的小正方形,12=3×4, 第(4)个图有20个相同的小正方形,20=4×5, …,
按此规律,第(n)个图有n(n+1)个相同的小正方形. 故答案为:n(n+1).
点评: 本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累. 18.(2012?潍坊) 如图中每一个小方格的面积为1,则可根据面积计算得到如下算式:1+3+5+7+…+(2n﹣1)= (用n表示,n是正整数)
考点: 规律型:图形的变化类;规律型:数字的变化类。810360 专题: 数形结合。
分析: 根据图形面积得出,第2个图形面积为22,第3个图形面积为32,第4个图形面积为42,…第n个图形面积为n2,即可得出答案. 解答: 解:利用每个小方格的面积为1,可以得出: 1+3=4=22, 1+3+5=9=32,
1+3+5+7=16=42,…
1+3+5+7+…+(2n﹣1)=n2. 故答案为:n2.
点评: 此题主要考查了数字变化规律以及图形变化规律,根据图形面积得出变化规律是解题关键,这也是中考中考查重点.
19.(2012?南宁)有若干张边长都是2的四边形纸片和三角形纸片,从中取一些纸片按如图所示的顺序拼接起来(排在第一位的是四边形),可以组成一个大的平行四边形或一个大的梯形.如果所取的四边形与三角形纸片数的和是5时,那么组成的大平行四边形或梯形的周长是 ;如果所取的四边形与三角形纸片数的和是n,那么组成的大平行四边形或梯形的周长是 .
考点: 规律型:图形的变化类。810360 分析: 第1张纸片的周长为8,由2张纸片所组成的图形的周长比第1张纸片的周长增加了2.由3张纸片所组成的图形的周长比前2张纸片所组成的图形的周长增加了4,按此规律可知:
①纸张张数为1,图片周长为8=3×1+5;纸张张数为3,图片周长为8+2+4=3×3+5;纸张张数为5,图片周长为8+2+4+2+4=3×5+5;…;当n为奇数时,组成的大平行四边形或梯形的周长为3n+5;
②纸张张数为1,图片周长为8+2=3×2+4;纸张张数为4,图片周长为8+2+4+2=3×4+4;纸张张数为6,图片周长为8+2+4+2+4+2=3×6+4;…;当n为偶数时,组成的大平行四边形或梯形的周长为3n+4.
解答: 解:从图形可推断:
纸张张数为5,图片周长为8+2+4+2+4=3×5+5=20;
当n为奇数时,组成的大平行四边形或梯形的周长为:8+2+4+…+2+4=3n+5; 当n为偶数时,组成的大平行四边形或梯形的周长为:8+2+…+4+2=3n+4. 综上,组成的大平行四边形或梯形的周长为3n+5或3n+4. 故答案为:20,3n+5或3n+4. 点评: 本题考查了规律型:图形的变化,解题的关键是将纸片的张数分奇偶两种情况进行讨论,得出组成的大平行四边形或梯形的周长. 20.(2012?梅州)如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达G点时移动了 cm;②当微型机器人移动了2012cm时,它停在 点.
考点: 规律型:图形的变化类。810360 专题: 规律型。
分析: ①结合图形,找出第一次到达G点时走过的正方形的边长数即可得解;
②根据移动一圈的路程为8cm,用2012除以8,余数是几就落在从A开始所走的距离,然后即可找出最后停的点.
解答: 解:①由图可知,从A开始,第一次移动到G点,共经过AB、BC、CD、DE、EF、FC、CG七条边, 所以共移动了7cm;
②∵机器人移动一圈是8cm,
2012÷8=251…4,
∴移动2012cm,是第251圈后再走4cm正好到达E点. 故答案为:7,E.
点评: 本题考查的是循环的规律,要注意所求的值经过了几个循环,然后便可得出结论. 21.(2012?娄底)如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“?”,共 个.
考点: 规律型:图形的变化类。810360
分析: 本题的关键是要找出4个图形一循环,然后再求2012被4整除,从而确定是共第503?.
解答: 解:根据题意可知梅花是1,2,3,4即4个一循环.所以2012÷4=503. 所以共有503个?. 故选答案为503.
点评: 主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 22.(2012?六盘水)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4= .
考点: 规律型:数字的变化类;完全平方公式。810360 专题: 规律型。
分析: 由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各
n﹣1
项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1. 解答: 解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4. 故答案为:a4+4a3b+6a2b2+4ab3+b4. 点评: 本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库中考数学复习专题讲座七:归纳猜想型问题(一)(3)在线全文阅读。
相关推荐: