11?(?cosx?x)26?(x?cosx)2?026?3?1???
?12
?x(14)
?x01?sin2xdx??x0sinx?cosxdx??40(cosx?sinx)dx??x4(sinx?cosx)dx
??(sinx?cosx)4?(?cosx?sinx)x?22x04
?(15)
??2xcosx?sinx(xsinx)2??1(x sinx)2d(xsinx)??12?42?2x sinx??4dx??244?
(16)
?3?1max{1 , x2}dx??1?1ldx??31x2dx?x1?1?x232?10313
11.设f(x)? 解:设
?t(l?t)e0x?2tdt,问x取何值时,f(x)取极大值或极小值.
?t(t?l)e-2tde?g(t)
f(x)?g(x)?g(e)
则
所以 因为 所以
f ' (x)?g ' (x)?x(x?1)e?2x??x(x?1)e?2x
f ' (x)在(?? ,0)f(x)在
,(?1 , ?? ) , (-1 , ?)上大于0,在(0 , 1)内小于0
(?? , 0) , (1 ,??)上单调递增,在(0 , 1)内单调递增.
所以当x?0时,f(x)取极大值,x?1时,f(x)取极小值。 12.设
?I1???2?sinx1?x2cos2xdx2?I2???2?(sinx?cosx)dx
2?I3???2(sin5x?cosx)dx?2比较I1 ,I2 ,I3的大小. 解:
?I1??2sinx??21?x2cos2xdx
?0
?I2?
?2??(sinx?cosx)dx2
?2
?I3?
?2??(sin5x?cosx)dx2
??2
????cosxdx2
???2??cosxdx?02
???2???cosxdx?02
?I3?I1?I2
13.用换元积分法计算下列各定积分 (1)
??sinx1?cos2xd0x (2)
?ln3dx 01?ex(4)
?1dx (5)
0(1?x2)3?2x2?11xdx 3)
?e2dx1?ln
1x(6)?ax2a2?x2dx0( (7)
?3dxx1?x21 (8)
?1xexe?eee??x0dx (9)?40tan(lncosx)dx
(10)(13)
??e6e223lnx?2dx (11)xdxx2?dxx(1?lnx)lnx (12)
?2?sin9xdx
0x?12 (14)
?1x?3?2x?5?1x2dx
解:(1)??x0?11?cos2xdcosx
x??arctan(cosx)
0?? 2(2)令1?ex?t
则x?ln(t2?1)
x?ln3,时t?2;x?0,时t?2
?2?221t2?1dt
?lnx?12 x?12??[ln3?2ln(2?1)]
(3)=
?e2dxx1?lnx1
2? ???0xsinxdx???xsinxdx?21?lnxe2 1?23?2
(4)?x31?322x12?03?dx(1?322x)
?x3(1?x2)1302?12dx
3(1?x2)102 ?2
2(5)??21x2?1dx x212 x1 ?x2?1?arccos1 ?3?x8?3
aa4xaarcsin 8a0(6)?(2x2?a2)a2?x2?0 ?0??16a4??16a4
(7)令x?tant,则积分区域为
3??到. 43?dx1?x2?1????34(sect)2?dttant?sect
???34?dt?dcost??3sint1?cos2t?
41d(?cost)13dcost???3???21?cost21?cost???4?4???1313ln(1?cost)?ln(1?cost)?2?24411?ln(2?2)?ln3(2?2)221?ln(2?2)?ln62
(8)令ex?t
??1exex?e?xe0dx??e11dt1tt?tt?1??edt??lnx?x2?1?
??1t2?11e?e2?11?2?ln(9)
(10)令t?lnx则x?et
?e6e3lnx?2dx?x3?613t?2dt62?(3t?2)219?14
(11)令lnx?t,则积分上下限变为与1.
12?eedxx(1?lnx)lnx??112dt(1?t)t
令t?sin2x积分上下限为:,
42?????22sinxdsinx1?sin2x?sinx???244?2dsinx1?sin2x??ln(sinx?sin2x?12?
4?ln1?22?2322??ln2?21?3(12)
??2??0sin9xdx
?????(cosx?4cos?6cos?4cos02(1?cos2x)4dcosx86420x?1)dcosx
?0(13)令x2?sec3a则dx?seca?tana
?22dxx2x2?1????34?seca?tana?dasec2?tana?
3?23???3cosada??sina??244?(14)令x?1?a
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库《微积分》习题6(3)在线全文阅读。
相关推荐: