? (4)?lim1?x2?113x-?0??x
0ln(1?t)dt1?x2?1 ?limx-?0?x
0ln(1?t)d(1?t)1?x2?1?0 ?limx?0??(ln??1)1(5)lim?x?0xx?x01(1?sin2t)tdt
?lim?01(1?sin2t)tx?0dt
1x洛必达法则lim(1?sinx)
x?0?lim(1?2x)x?01?2 2x?e2
lntdt1?t1(6)limx?1(x?1)2?x
lnx?lim1?xx?12x?2
11lnx1x?1?lim?limx?12x2?12x?12x41
1?(7)lim?x?????lim1x2?lim?x2x???ln(edt??e?0?t22x?x0edt)xt22
?ex???xt?ln?0edt?e1x2?x2?e
(8)limx????(arctant)dt
20x1?x2??x0x???x???(limarctan)2dtlim1?x2
?2?x???4lim1?x2?0
(9)?x???lim1x?x0(t?t2)et2?x2dt
?lim?x0(t?t2)etx?ex22x???dt
洛必达法则lim
(x?x2)ex22x???ex(1?2x)2?1 27.设F(x)在[a , b]上连续,且f(x)?0
F(x)??xaf(t)dt??xb1dt f(t)求证:(1)F ' (x)?2;
(2)F ' (x)在[a , b]内有且仅有一个实根.
解:证明: (1)设f(t)dt?g(t) ??1dt?h(t) f(t)F(x)?g(x)?g(a)?h(x)?h(b)?F ' (x)?g ' (x)-g ' (a)?h ' (x)-h ' (b)?f(t)?1f(t)
又因为f(t)?0 , ?F ' (x)?2
(2)因为F(x)在[a , b]上单调增加,又因为F(a)??ab1de??f(t)?ba1de?0 f(t)F(b)??baf(t)dt?0
又因为F(x)在区间[a , b]上连续. 所以在区间[a , b]内紧有一个实根. 8.设
f(x)为连续函数,且存在常数a满足
ex-1?x??axf(t)dt
求
f(x)及常数a.
解:设f(e)de?g(t)
?则ex?1?x?g(a)?g(x) 对等式两边求导,得:
ex?1?x?g ' (a)?g ' (x)??f(x)
所以所以
f(x)?1?ex?1
?axf(t)dt??axex?1dx?x?ex?1a?a?ea?1?ex?1?x x?1所以a?1 9.设 解:
Q ' (t)?f(t) , P ' (t)?Q(t)x?(x?t)f(t)dt?1?cosx,说明?0x?20f(x)dx?1.
?(x?t)f(t)dt0?tf(t)dt?x[Q(x)?Q(0)]?td(Q(t) ??x[Q(x)?Q(0)]?tdQ(t)?x?x[Q(x)?Q(0)]?tQ(t)?Q(t)dt0??x[Q(x)?Q(0)]?0x0x0x0x??Q(x)dt?1?cosx0x即
P(x)-P(0)?1-cosx?Q(x)?sinx?f(x)?cosx?
?2?f(x)dx?sinx02?10
10.用牛顿-莱布尼茨公式计算下列积分 (1)
?8dx (2)
1x?e?x)dx 13x?(e?12?12arcsinx2dx
21?x(5)
??0cosxdx (6)
?2xdx ?1?(9)
?ex2?lnx2d31xx (10)??tanxdx 62?4??x?1???d1?x?x ??(13)
?21?2?sindx (14)?1?sin2xdx 00?3max{1 , x2}dx
?1
解:(1)?8dx2x?32x381?9132
(2)?1(ex?e?x)dx?(ex?e?x)1?1?1?0 (3)
?e2(lnx)2e2(lnx)2d(lnx)?1e21xdx??(lnx)313122(4)
?12arcsinxdx?21?x2?12arcsinxdarcsinx
2?122arcsin2x21?2?21?2(16?36)
s3)
?e2(lnx)21xdx 7)
?1dx ?14?x2?11)??3tan2xdx 6?15)?xcosx?sinx?2dx4(xsinx)2(4)8)
?2dx04?x212)(16)
(((
((( ?5?2288
xx(5)
?x0cosxdx?2 cosxdx???cosxdx?sinx2?sinxx?2
x0022???(6)
?2?11xdx??20?1?xdx??20xdx?1221205x?x? 202?12(7)?(8)
dx4?x?1?arcsinx1??2?13
??2dx4?x20e?1x2?arctg? 2208(9)
1x2?lnx2dx?x?xdx??1ee121lnx1edx?x2?2x21?e1lnxdlnx
?e1121(e?1)?2(lnx)2?(e2?3)
1222??tanxdx??lncosx3(10)
??3??61ln3 26?(11)
???3tanxdx??3626?1cosx2??ldx??3(sec2x?1)dx
6??2ln2?1
?(3??3)?(3??) 36?442?3?36
1dx x(12)
?1(x?1x)2dx??1x?2x?1dx?x?411?2x?4?(x?44?lnx
1?2ln2?1
(13)
??20?111?sinxdx?6(?sinx)dx??2(sinx?)dx 2202???6
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库《微积分》习题6(2)在线全文阅读。
相关推荐: