77范文网 - 专业文章范例文档资料分享平台

概率论与数理统计(修订版)复旦大学出版习题三答案

来源:网络收集 时间:2019-01-05 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

习题三

1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与

出现反面次数之差的绝对值.试写出X和Y的联合分布律. 【解】X和Y的联合分布律如表: Y X 0 0 1 2 3 1 3 1113C1???? 322280 1 8110 21C3????3/8 22211110 ??? 2228

2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律. 【解】X和Y的联合分布律如表: Y X 0 0 1 0 2 22C3?C23 ?4C7352C3?C1C1122?2 ?4C73522C3?C23 ?4C7353 0 C3C123?2 ?4C735C3C123?2 ?4C7350 1 0 C1C1C263?2?2 ?4C7351 352 P(0黑,2红,2白)= 4C2C22?2/C7?C1C2C163?2?2 ?4C735

3.设二维随机变量(X,Y)的联合分布函数为

ππ??sinxsiny,0?x?,0?y?F(x,y)=?22

?其他.?0,求二维随机变量(X,Y)在长方形域?0?x?【解】如图P{0?X???πππ?,?y??内的概率. 463?πππ,?Y?}公式(3.2) 463ππππππF(,)?F(,)?F(0,)?F(0,) 434636

1

?sinπ4?sinπ3?sinπ4?sinπ6?sin0?sinπ3?sin0?sinπ6?2

4(3?1).

题3图

说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度

?Ae?(3x?4y)f(x,y)=?,x?0,y?0,?0,其他.

求:(1) 常数A;

(2) 随机变量(X,Y)的分布函数; (3) P{0≤X<1,0≤Y<2}. 【解】(1) 由

??????????f(x,y)dxdy????-(3x?4y)0???0Aedxdy?A12?1 得 A=12? (2) 由定义,有 F(x,y)??y???x??f(u,v)dudv

?yy?(3u?4v) ????0?012edudv???(1?e?3x)(1?e?4y)y?0,x?0,??0,?0,其他(3) P{0?X?1,0?Y?2}

?P{0?X?1,0?Y?2}

??120?012e?(3x?4y)dxdy?(1?e?3)(1?e?8)?0.9499.

5.设随机变量(X,Y)的概率密度为

f(x,y)=??k(6?x?y),0?x?2,2?y?4,?0,其他.

(1) 确定常数k;

(2) 求P{X<1,Y<3}; (3) 求P{X<1.5}; (4) 求P{X+Y≤4}. 【解】(1) 由性质有

2

??????????f(x,y)dxdy??20?42k(6?x?y)dydx?8k?1,

故 R?

1? 8

(2) P{X?1,Y?3}? ?(3) P{X?1.5}???1313????f(x,y)dydx

x?1.5???13k(6?x?y)dydx? ?0?288f(x,y)dxdy如图a??f(x,y)dxdy

D1 ?1.50dx?(4) P{X?Y?4}?X?Y?42??127(6?x?y)dy?. 2832f(x,y)dxdy如图b??f(x,y)dxdy

4D24?x2 ??dx?012(6?x?y)dy?. 83

题5图

6.设X和Y是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为

?5e?5y,y?0,fY(y)=?

其他.?0,求:(1) X与Y的联合分布密度;(2) P{Y≤X}.

题6图

【解】(1) 因X在(0,0.2)上服从均匀分布,所以X的密度函数为

?1?,0?x?0.2, fX(x)??0.2?其他.?0,而

3

?5e?5y,y?0,fY(y)??

其他.?0,所以

f(x,y)XY,独立fXx(?f)Yy( )?1?5y ????5e?25e?5y,0?x?0.2且y?0,?0.2?? ?0,?0,其他.(2) P(Y?X)?f(x,y)dxdy如图y???x??25e?5ydxdy

D0.2x-5y

??0dx?25edy??0.2(?5e?5x00?5)dx

=e-1?0.3679.7.设二维随机变量(X,Y)的联合分布函数为

F(x,y)=??(1?e?4x)(1?e?2y),x?0,y?0,?0,其他.求(X,Y)的联合分布密度.

【解】f(x,y)??2F(x,y)?x?y???8e?(4x?2y),x?0,y?0, ?0,其他.8.设二维随机变量(X,Y)的概率密度为

f(x,y)=??4.8y(2?x),0?x?1,0?y?x,?0,其他.求边缘概率密度. 【解】fX(x)??????f(x,y)dy

? =???x(2?x)dy??2.4204.8y??x(2?x),0?x?1, ?0,?0,其他. fY(y)??????f(x,y)d x?1 =???y4.8y(2?x)dx??2.4y(3?4y?y2),0?y???1,?0,?0,其他.

4

题8图 题9图

9.设二维随机变量(X,Y)的概率密度为

(x,y)=??e?yf,0?x?y,?0,其他.

求边缘概率密度. 【解】fX(x)??????f(x,y)dy

????y?x =???xedy??e,x?0,?? ?0,?0,其他.fY(y)??????f(x,y)dx

?y?y?x =???0edx??ye,y?0,?? ?0,?0,其他.

题10图

10.设二维随机变量(X,Y)的概率密度为

f(x,y)=??cx2y,x2?y?1,?0,其他.

(1) 试确定常数c;

(2) 求边缘概率密度. 【解】(1)

??????????f(x,y)dxdy如图??f(x,y)dxdy

D =?1-1dx?124x2cxydy?21c?1. 得?c?214. (2) fX(x)??????f(x,y)dy

5

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库概率论与数理统计(修订版)复旦大学出版习题三答案在线全文阅读。

概率论与数理统计(修订版)复旦大学出版习题三答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/406267.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: