材料的晶粒变大,比表面积变小,不利于锂离子在材料中的脱出和嵌入;温度过低,反应不完全,容易生成无定型材料,材料的结晶性能不好,且易含有杂相,对材料的电化学性能影响也较大。
A、预处理后的前驱体与锂盐混合煅烧温度:结晶度高,粒径分布均匀,
一次颗粒较大的纯相材料的电化学性能和加工性能都比较好,提高烧结温度可以提高一次颗粒的尺寸,但是会减小材料的比表面积,随着材料的比表面积减小,材料与电解液的接触面积也会相应地减小,也就直接影响材料的充放电性能,所以只有当烧结温度适中,才能使材料的加工性和电化学性能达到最佳状态。温度升高对产物的松比装密度影响不大,而对产物的振实密度影响较大。温度升高,一方面促使产物中的一次颗粒生长得粗大、致密,提高振实密度。另外原料中许多未成球的团聚小颗粒也由于固相反应而重新生长成结构致密的产物。温度条件实验可以确定最佳的合成温度为920℃12h。
B、碳酸盐直接与锂盐混合煅烧温度:用球形Nil/3Co1/3 /3Mn1/3CO3与碳
酸锂混合,在500℃下恒温5小时,然后在900度下恒温12小时,得到的球形 LiNil/3Co1/3 /3Mn1/302,在2.7一4.3v电压范围内,0.2C倍率下表现出150mAh.g-1,循环性能较好。用前驱体直接合成的LiNil/3Co1/3 /3Mn1/302相对前驱体经过预处理合成的,材料的综合性能稍差。
三元材料的修饰改性:
原因:锂离子(r=0.76)与镍离子(r=0.69)半径相近,在LiNi1/3Co1/3Mn1/3O2
中存在阳离子混排现象,锂层中镍离子浓度越大,锂在层状结构中的脱嵌越难,导致电化学性能变差。
掺杂元素: Mg---当镁取代部分的Ni或Co时,会导致容量的减少,循环性能
变差;取代部分Mn时,材料的比容量、循环性能、在高氧化态下的热稳定性都得到提高。
Al、Ti---参杂量小于1/20的Al,材料的结构没有改变,放电容量
保持率得到提高,随参杂量的增加,参数a有轻微的变小,参杂量大于1/16时,容量保持率明显下降。Al取代部分Co会升高放电电压平台,提高材料在4.3V下的热稳定性;Ti同样可提高材料在4.3V下的热稳定性; Mo6+---部分取代Mn,增加了材料中活性元素Ni的含量,可提高
放电比容量和材料的循环性能;
Fe----部分取代Co后,Ni和Fe能被同时氧化,提高容量,可以减
少阳离子混排现象;
Cr----在充电过程中与Ni同时被氧化,材料得到较高的首次放电比
容量,还能提高材料颗粒的大小、库伦效率、循环性能、允许大电流放电;Cr量为0.015时的正极材料电化学性能最佳;
F---参杂会导致过渡金属的价态变化,引起一个复杂的晶格常数的
变化,促进合成材料的颗粒在合成过程中增大,提高结晶度和振实密度,并且能改善正极材料的界面,避免与电解液接触发生分解反应,增强了对电解质中HF的抗腐蚀能力,提高正极材料的循环性能;另外F掺杂还可促进材料烧结,使该材料粒径通过粉碎分级控制成为可能,有利于该材料电极的制备。Al和F、Mg和F的参杂可提高材料的结构的稳定性、可逆比容量、循环性能,并提高材料的振实密度,从而提高电池的能量密度; Si----材料在充放电过程中没有阻抗的增加,具有更好的大电流充放
电能力;
Zn----一方面利用Zn在充放电过程中不变价的特点来稳定材料结构,
另一方面,由于Zn的价态较低,掺杂可提高Mn的价态,使材料中Mn3+尽量向结构稳定的Mn4+转变。 掺杂改性:
对于采用金属元素掺杂,能对LiNi1/3Co1/3Mn1/3O2的晶格结构起到一定的支撑和稳定作用,并且有效抑制晶胞结构在充放电过程中的相变和塌陷,以达到提高材料的安全、循环性能和放电平台的目的。 1、球形Li(Ni1/3Co1/3Mn1/3)1-xZnxO2的合成
将CoSO4.7H2O、NiSO4.7H2O、MnSO4.H2O按金属摩尔比1:1;1混合溶液,同时按Zn:(Ni+Co+Mn)=0.03:097配入ZnSO4.7H2O,配成总浓度为2.0molL-1的溶液,与2.0 molL-1的Na2CO3按反应计量比加入到转速为500rmin-1的反应釜中,同时加入一定量的氨水,在55℃下反应一定时间得球形(Ni1/3Co1/3Mn1/3)1-xZnxCO3。所的产物用去离子水洗涤3次,在80℃下烘干,得到碳酸盐前驱体。将球形(Ni1/3Co1/3Mn1/3)1-xZnxCO3在一定温度下氧化,按Li与氧化物过渡金属一定的配比配入碳酸锂,在920℃反应,随炉冷却得到Li(Ni1/3Co1/3Mn1/3)1-xZnxO2。
Zn掺杂能明显改善LiNi1/3Co1/3Mn1/3O2的循环性能,但掺杂过多却恶化材料的循环性能,当掺入量为0.05时出现四氧化三钴相,恶化导电性,所以交换电流密度变小,材料的充放电容量下降。此外,掺杂Zn元素使LiNi1/3Co1/3Mn1/3O2得电阻增加。掺杂Zn在改善循环性能的同时降低了材料的容量,原因一方面是Zn2+没有变价,部分取代了有容量的镍钴锰元素,
因此材料充放电过程中比容量会降低,另一方面,参入Zn2+,提高了材料中LiNi1/3Co1/3Mn1/3O2的化合价,使Mn3+氧化成Mn4+更加完全,相应的也降低了材料的容量。 2、Zr、La的掺杂:
将三元混合材料前驱体Ni1/3Co1/3Mn1/3(OH)2和LiOH.H2O均匀混合,再分别单独加入二氧化锆(ZrO2)、氧化镧(La2O3),并且按照不同的摩尔比例混合,将混合物首先进行预烧结,然后在840℃进行12h的高温煅烧,最终合成Li[Ni1/3Co1/3Mn1/3]xM1-xO2,(M=Zr、La,x=0.99)材料。掺杂后所制备的材料容量有所下降,但对于提高材料的循环性能有一定的效果。
包覆改性:
ZrO2、TiO2和Al2O3氧化物的包覆能阻止充放电过程中阻抗变大,提高材料的循环性能,其中 ZrO2的包覆引发材料表面阻抗增大幅度最小,Al2O3的包覆不会降低初始放电容量。
1、采用非均匀成核法对LiNi1/3Co1/3Mn1/3O2进行表面包覆氧化铝
采用非均匀成核法在LiNi1/3Co1/3Mn1/3O2表面包覆氧化铝的前驱体Al(OH)3,关键在于控制好溶液中铝离子浓度,使该浓度处于Al(OH)3发生均匀成核所需要的铝离子浓度的临界值和发生非均匀成核所需要的铝离子浓度的临界值之间。使得LiNi1/3Co1/3Mn1/3O2颗粒成为成核基体,促使Al(OH)3晶核在被包覆颗粒表面生长。在LiNi1/3Co1/3Mn1/3O2表面包覆好Al2O3后,过滤烘干后,在一定温度下进行热处理,得到表面包覆纳米氧化铝的球形LiNi1/3Co1/3Mn1/3O2。
操作:为了使Al(OH)3与LiNi1/3Co1/3Mn1/3O2有更好的相容性,生成的Al(OH)3颗粒能在球形LiNi1/3Co1/3Mn1/3O2均匀成核,先对LiNi1/3Co1/3Mn1/3O2进行预处理。再根据包覆物Al2O3的含量相对于LiNi1/3Co1/3Mn1/3O2的质量分数为0.5%分别称取所需的Al(NO3)3.9H2O分析纯和LiNi1/3Co1/3Mn1/3O2,用去离子水分别配成0.02molL-1的Al(NO3)3溶液和
50gL-1
的
LiNi1/3Co1/3Mn1/3O2
悬浊液,Al(NO3)3
溶液与
LiNi1/3Co1/3Mn1/3O2悬浊液在剧烈的搅拌下混合均匀。用0.5molL-1的氨水把PH值调节到9.0,反应过程控制氨水的流量,反应时间4h,陈化2h后过滤,用去离子水洗涤3次,100℃下恒温5h,得到包覆Al(OH)3的LiNi1/3Co1/3Mn1/3O2。再将其500℃下恒温10h,即得到表面包覆Al2O3的球形LiNi1/3Co1/3Mn1/3O2。 2、Li(Ni-Co-Mn)O2的包覆改性:
碳包覆:主要是采用有机物为碳源,高温裂解生成碳而均匀的包覆于材料表
面。由于有机物高的裂解温度(600℃~900℃),高温下产生的碳容易将三元材料中的镍钴锂还原,因此很少应用于三元材料的改性。
含铝氧化物包覆改性:无定型结构的
Al2O3 在
Li[Li0.05Ni0.4Co0.15Mn0.4]O2 颗粒表面形成了均一的薄层(大约5nm),结果表明,当采用LiPF6 电解液时,Al2O3 包覆层越薄,材料的容量越高,薄的Al2O3 包覆层对Li+在电极和电解液界面间的嵌入反应并不产生干扰。此外由于Al2O3 纳米包覆层的存在,材料的倍率性能和高温性能均优于未包覆材料,这是由于Al2O3 包覆层的存在抑制了循环过程中电解液所产生的HF 对三元材料的腐蚀,因此减少了活性材料的分解,从而降低了电池的阻抗,改善了材料的电化学性能。
Li2ZrO3 的包覆改性:Li2ZrO3在非水电解质中比较稳定并且具有化学惰性,非常适合作为包覆层来保护电极材料,并且Li2ZrO3为含锂化合物,用它做包覆材料不会阻碍锂离子在充放电过程中的扩散。Ni等人采用浸渍法合成了Li2ZrO3包覆LiNi0.4Co0.2Mn0.4O2三元材料,结果表明,Li2ZrO3包覆改善了LiNi0.4Co0.2Mn0.4O2三元材料颗粒的表面性能,减少了电极材料与电解液的副反应,而且有效的降低了Li+与Ni2+的混合占位现象。因此其充放电性能与循环性能,尤其是在高温下50°C,得到了很大的改善。
虽然采用不同的物质对 Li[Ni-Co-Mn]O2 三元材料进行包覆改性后,电池的充放电容量提高程度不一,但是其循环性能却都得到了大大的改善,尤其是在高温高倍率下,多次循环后电池的容量衰减明显减少。这是由于在使用LiPF6 电解液时,包覆层的存在抑制了循环过程中HF 对电极材料的腐蚀,减少了电解液与电极材料的副反应,阻止了Ni2+,Co3+,Mn4+金属离子的溶解,从而降低了电池的阻抗,大大改善了材料的电化学性能。 3、Lil/3C01/3Mnl/302表面包覆修饰改性:
利用喷雾干燥法,制备出了LiNi1/3Co1/3Mnl/302正极材料,将其与Zr(OC3H7)4共同放入丙醇中,在80--90℃进行搅拌,直到获得透明胶体。将最终的前驱体在450℃焙烧5 h,最终制备出表面包覆Zr02的LiNil/3C01/3Mnl/302正极材料。Zr没有掺杂到LiNiI/3C01/3Mn1/302体相中,而是完全分布在LiNi1/3Co1/3Mnl/302材料的表面上。通过恒流充放电的测试,在充电截止电压为4.5V时,表面包覆Zr02的正极材料在比容量和循环稳定性上比未包覆的正极材料有所提高,并且还发现包覆Zr02可以抑制在充放电循环过程中的极化现象,表面包覆的Zr02阻止了活性物质和电解液的直接接触,从而减少了电解液在循环过程中的分解。 4、包覆TiO:
将三元正极材料LiNi1/3Co1/3Mn1/3O2加入到水溶液中,恒温搅拌,通
过加入氨水将溶液的PH值调整在10,此时加入金属铊的硝酸盐溶液,以便滴加一边测定溶液的ph值,使PH值保持在10附近,匀速搅拌3h,恒温陈化5h,将陈化后产物放入干燥箱,110℃恒温干燥成粉末,最后将其放入马沸炉,450℃恒温保持5h,最终得到表面包覆金属氧化物的三元正极材料。表面包覆金属氧化物的量为0.5%mol。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库三元材料总结(6)在线全文阅读。
相关推荐: