77范文网 - 专业文章范例文档资料分享平台

2018年中考数学试卷(2)

来源:网络收集 时间:2018-09-11 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

第5页(共23页)

程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.

27.(12分)问题呈现

如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值. 方法归纳

求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中. 问题解决

(1)直接写出图1中tan∠CPN的值为 ;

(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值; 思维拓展

(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.

28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,

第6页(共23页)

同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒. (1)当t=2时,线段PQ的中点坐标为 ; (2)当△CBQ与△PAQ相似时,求t的值;

(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.

第7页(共23页)

参考答案与试题解析

一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.

【解答】解:﹣5的倒数﹣. 故选:A. 2.

【解答】解:由题意,得 x﹣3≥0, 解得x≥3, 故选:C. 3.

【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形, 故选:B. 4.

【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;

B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;

C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;

D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;

第8页(共23页)

故选:B. 5.

【解答】解:由题意,得

k=﹣3,图象位于第二象限,或第四象限, 在每一象限内,y随x的增大而增大, ∵3<6, ∴x1<x2<0, 故选:A. 6.

【解答】解:由题意,得 x=﹣4,y=3,

即M点的坐标是(﹣4,3), 故选:C. 7.

【解答】解:∵∠ACB=90°,CD⊥AB, ∴∠ACD+∠BCD=90°,∠ACD+∠A=90°, ∴∠BCD=∠A. ∵CE平分∠ACD, ∴∠ACE=∠DCE.

又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE, ∴∠BEC=∠BCE, ∴BC=BE. 故选:C. 8.

【解答】解:由已知:AC=

AB,AD=

AE

第9页(共23页)

∵∠BAC=∠EAD ∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确 ∵△BAE∽△CAD ∴∠BEA=∠CDA ∵∠PME=∠AMD ∴△PME∽△AMD ∴

∴MP?MD=MA?ME 所以②正确 ∵∠BEA=∠CDA ∠PME=∠AMD

∴P、E、D、A四点共圆 ∴∠APD=∠EAD=90°

∵∠CAE=180°﹣∠BAC﹣∠EAD=90° ∴△CAP∽△CMA ∴AC2=CP?CM ∵AC=

AB

∴2CB2=CP?CM 所以③正确 故选:A.

二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 9.

【解答】解:0.00077=7.7×10﹣4, 故答案为:7.7×10﹣4.

第10页(共23页)

10.

【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x), 故答案为:2(x+3)(3﹣x) 11.

【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,

而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种; 故其概率为:. 12.

【解答】解:由题意可知:2m2﹣3m﹣1=0, ∴2m2﹣3m=1

∴原式=3(2m2﹣3m)+2015=2018 故答案为:2018 13.

【解答】解:设圆锥的底面圆半径为r,依题意,得 2πr=解得r=故选: 14.

【解答】解:解不等式3x+1≥5x,得:x≤, 解不等式

>﹣2,得:x>﹣3, , cm. .

则不等式组的解集为﹣3<x≤,

第11页(共23页)

故答案为:﹣3<x≤. 15.

【解答】解:连接AD、AE、OA、OB,

∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°, ∴∠ADB=45°, ∴∠AOB=90°, ∵OA=OB=2, ∴AB=2

故答案为:2

16.

【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根, ∴△>0且m≠0, ∴4﹣12m>0且m≠0, ∴m<且m≠0,

故答案为:m<且m≠0. 17.

【解答】解:由折叠得:∠CBO=∠DBO, ∵矩形ABCO, ∴BC∥OA, ∴∠CBO=∠BOA, ∴∠DBO=∠BOA,

第12页(共23页)

∴BE=OE,

在△ODE和△BAE中,

∴△ODE≌△BAE(AAS), ∴AE=DE,

设DE=AE=x,则有OE=BE=8﹣x,

在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2, 解得:x=5,即OE=5,DE=3, 过D作DF⊥OA,

∵S△OED=OD?DE=OE?DF, ∴DF=则D(

,OF=,﹣

). ,﹣

=

故答案为:(

18.

【解答】解:∵y=mx+m=m(x+1), ∴函数y=mx+m一定过点(﹣1,0), 当x=0时,y=m,

∴点C的坐标为(0,m),

由题意可得,直线AB的解析式为y=﹣x+2,

第13页(共23页)

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说中考初中2018年中考数学试卷(2)在线全文阅读。

2018年中考数学试卷(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zhongkaochuzhong/147083.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: