77范文网 - 专业文章范例文档资料分享平台

遗传算法 - matlab(4)

来源:网络收集 时间:2020-04-03 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

bestindividual=pop(i,:); bestfit=fitvalue(i); end end

% 2.8 主程序 %遗传算法主程序 %Name:genmain05.m clear clf

popsize=20; %群体大小

chromlength=10; %字符串长度(个体长度) pc=0.6; %交叉概率 pm=0.001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体 for i=1:20 为迭代次数

[objvalue]=calobjvalue(pop); %计算目标函数

fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度 [newpop]=selection(pop,fitvalue); %复制 [newpop]=crossover(pop,pc); %交叉 [newpop]=mutation(pop,pc); %变异

[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值 y(i)=max(bestfit); n(i)=i;

pop5=bestindividual;

x(i)=decodechrom(pop5,1,chromlength)*10/1023; pop=newpop; end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10]) hold on plot(x,y,'r*') hold off

[z index]=max(y); %计算最大值及其位置 x5=x(index)%计算最大值对应的x值 y=z

【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】 %编写目标函数

function[sol,eval]=fitness(sol,options) x=sol(1);

eval=x 10*sin(5*x) 7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',... [0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %次遗传迭代 运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553) 注:遗传算法一般用来取得近似最优解,而不是最优解。 遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。 【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】

%源函数的matlab代码 function [eval]=f(sol) numv=size(sol,2); x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282; %适应度函数的matlab代码

function [sol,eval]=fitness(sol,options) numv=size(sol,2)-1; x=sol(1:numv); eval=f(x); eval=-eval;

%遗传算法的matlab代码 bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为 p =

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】 %编写目标函数

function[sol,eval]=fitness(sol,options) x=sol(1);

eval=x+10*sin(5*x)+7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',... [0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %次遗传迭代 运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553) 注:遗传算法一般用来取得近似最优解,而不是最优解。 遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。 【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】

%源函数的matlab代码 function [eval]=f(sol) numv=size(sol,2); x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282; %适应度函数的matlab代码

function [sol,eval]=fitness(sol,options) numv=size(sol,2)-1; x=sol(1:numv); eval=f(x); eval=-eval;

%遗传算法的matlab代码 bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为 p =

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

matlab遗传算法工具箱函数及实例讲解 核心函数:

(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数【输出参数】

pop--生成的初始种群【输入参数】 num--种群中的个体数目

bounds--代表变量的上下界的矩阵 eevalFN--适应度函数

eevalOps--传递给适应度函数的参数

options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度

F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数【输出参数】 x--求得的最优解

endPop--最终得到的种群

bPop--最优种群的一个搜索轨迹【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数

evalOps--传递给适应度函数的参数 startPop-初始种群

opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]

termFN--终止函数的名称,如[\\'maxGenTerm\\'] termOps--传递个终止函数的参数,如[100]

selectFN--选择函数的名称,如[\\'normGeomSelect\\'] selectOps--传递个选择函数的参数,如[0.08]

xOverFNs--交叉函数名称表,以空格分开,如[\\'arithXover heuristicXover simpleXover\\'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]

mutFNs--变异函数表,如[\\'boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation\\']

mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08 【程序清单】 %编写目标函数

function[sol,eval]=fitness(sol,options) x=sol(1);

eval=x+10*sin(5*x)+7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],\\'fitness\\');%生成初始种群,大小为10

[x

endPop,bPop,trace]=ga([0

9],\\'fitness\\',[],initPop,[1e-6

1

1],\\'maxGenTerm\\',25,\\'normGeomSelect\\',...

[0.08],[\\'arithXover\\'],[2],\\'nonUnifMutation\\',[2 25 3]) %次遗传迭代运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3 【程序清单】

%源函数的matlab代码 function [eval]=f(sol) numv=size(sol,2); x=sol(1:numv);

eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;

%适应度函数的matlab代码

function [sol,eval]=fitness(sol,options) numv=size(sol,2)-1; x=sol(1:numv); eval=f(x); eval=-eval;

%遗传算法的matlab代码 bounds=ones(2,1)*[-5 5];

[p,endPop,bestSols,trace]=ga(bounds,\\'fitness\\')

注:前两个文件存储为m文件并放在工作目录下,运行结果为 p =

0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:

fplot(\\'x+10*sin(5*x)+7*cos(4*x)\\',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库遗传算法 - matlab(4)在线全文阅读。

遗传算法 - matlab(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/930804.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: