湖北省黄冈中学2013届高三11月月考
数学试题(文)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有
一项是符合题目要求的. 1.sin(?1920)的值为( )
?
A.?3 2?B.?1 2??C.3 2??D.
1 2?
解析:sin(?1920)?sin(240?6?360)?sin(180?60),即原式??sin60,故选A. 答案:A
2.命题“?x?R,x2?0”的否定是( )
A.?x?R,x2?0 C.?x?R,x2?0
B.?x?R,x2?0 D.?x?R,x2?0
解析:全称命题的否定是特称命题,易知应选D. 答案:D
3.已知集合P?{正奇数}和集合M?{x|x?a?b,a?P,b?P},若M?P,则M中
的运算“?”是( ) A.加法 B.除法
C.乘法 D.减法
*解析:由已知集合M是集合P的子集,设a?2m?1,b?2n?1(m,n?N),∵a?b?(2m?1)(2n?1)?4mn?2(m?n)?1?2[2mn?(m?n)?1]?1?P,∴M?P,而其它运算均不使结果属于集合P,故选C.
答案:C
4.已知某几何体的侧视图与其正视图相同,相关的尺寸如下图所示,则这个几何体的体积
是( )
4 1 3 俯视图正 视 图 侧视图
A. 8?
B. 7?
C. 2?
2`D.
7? 4解析:依题意该几何体为一空心圆柱,故其体积V??[2?()]?1?答案:D
3227?,选D. 45.已知幂函数f(x)?x
A.8
2?m是定义在区间[?1,m]上的奇函数,则f(m?1)?( )B.4
3[来源:Zxxk.Com]
C.2 D.1
3解析:由已知必有m?1,函数即g(x)?x,∴f(m?1)?f(2)?2?8,选A. 答案:A
????6.已知平面向量a?(1,m),b?(?1,2),且a//b,则2a?3b=( )
A.(5,2)
B.(?1,2)
C.(5,?10)
D.(?1,?10)
?解析:∵a//b,∴1?2?m?(?1)?0,∴m??2,∴a?(1,?2),
??∴2a?3b?2(1,?2)?3(?1,2)?(5,?10),故选C.
答案:C
7.已知A、B两点分别在两条互相垂直的直线2x?y?0和x?ay?0上,且AB线段的
中点为P(0,
A.11
10),则线段AB的长为( ) aB.10
C.9
D.8
[来源学科网ZXXK]
解析:由已知两直线互相垂直得a?2,∴线段AB中点为P(0,5),且AB为直角三角形AOB的斜边,由直角三角形的性质得|AB|?2|PO|?10,选B.
答案:B
8.已知各项为正的等比数列{an}中,a4与a14的等比中项为22,则2a7?a11的最小值
为( )
A.16
B.8
2C.22 D.4
解析:由已知a4a14?(22)?8,再由等比数列的性质有a4a14?a7a11?8, 又a7?0,a11?0,2a7?a11?22a7a11?8,故选B.
,f(2)?2,则函数g(x)?f(x)?x?x2?bx?c,x?09.设函数f(x)??,若f(4)?(0f),x?0?1
的零点的个数是( )
A.0 B.1
C.2 D.3
?16?4b?c?c?b??42解析:已知即?,∴?,若x?0,则x?4x?6?x,∴x?2,
?4?2b?c?2?c?6或x?3;若x?0,则x?1舍去,故选C.
答案:C
10.设集合A???x,y?||x|?|y|?1?,B???x,y?(y?x)(y?x)?0?,M?A?B,若
22动点P(x,y)?M,则x?(y?1)的取值范围是( )
A.[,]
1522B.[25,] 22C.[,1210] 2D.[210,] 22
解析:在同一直角坐标系中画出集合A、B所在区域,取交集后如
图,故M所表示的图象如图中阴影部分所示,而
d?x2?(y?1)2表示的是M中的点到(0,1)的距离,从而易知
所求范围是[,],选A.
答案:A
二.填空题:本大题共7小题,每小题5分,共35分,把答案填在题中横线上.
1522
11.在空间直角坐标系中,点(?1,b,2)关于y轴的对称点是(a,?1,c?2),则点P (a,b,c)到坐标原点O的距离|PO|?_____________.
解析:由点(x,y,z)关于y轴的对称点是(?x,y,?z),?a?1,b??1,c?0,故所求距离|PO|?
答案:2 2.
12.定义运算
acbdzi1i?ad?bc,复数z满足
zi1i?1?i,则复数z? _______________.
解析:由
?1?i得zi?i?1?i?z?1?2i?2?i. i答案:2?i
13.已知A?{x|
11 ?2?x?},B?{x|log2(x?2)?1},则A?B?_________________。
82131x11解析:A?{x|()?()?()}?{x|1?x?3},
222B?{x|0?x?2?2}?{x|2?x?4},∴A?B?{x|1?x?4}.
答案:{x|1?x?4}
22214.已知方程x?y?kx?2y?k?0所表示的圆有最大的面积,则直线y?(k?1)x?2的倾斜角??_______________.
解析:r?12k?4?4k2?1,当有最大半径时圆有最大面积,此时k?0,r?1,2∴直线方程为y?x?2,设倾斜角为?,则由tan??1,且??[0,?)得??
答案:
?4.
? 415.在如图的表格中,每格填上一个数字后,使得每一横行成等差数列,每一纵列成等比数1 2 列,则a?b?c的值为________________.
0.5 1 1111 解析:由题意易得第一列的五个数依次为1,,,,, a 24816 b 1111 c 第三列的五个数依次为2,1,,,,即a?,
2482
由于第四、五两行均成等差数列,故其公差分别为
11和, 1632115113??,c???2?, 4161683216153故a?b?c????1.
21616∴可得b?H A
答案:1
16.四棱锥ABCD中,E、H分别是AB、AD的中点,F、G
分别是CB、CD的中点,若AC+BD=3,AC·BD=1,则EG2+FH2=___________. 解析:易知四边形EFGH是平行四边形,而平行四边形
对角线的平方和等于各边的平方和,
D G C E F B
11∴EG2?FH2?2(HG2?EH2)?2[(AC)2?(BD)2]
221117?(AC2?BD2)?[(AC?BD)2?2AC?BD]?(32?2?1)?. 2222答案:
7 2ex?e?xex?e?x17.在工程技术中,常用到双曲正弦函数shx?和双曲余弦函数chx?,
22双曲正弦函数和双曲余弦函数与我们学过的正弦函数和余弦函数有许多相类似的性质,
请类比正、余弦函数的和角或差角公式,写出关于双曲正弦、双曲余弦函数的一个正确的类似公式 .
ex?e?xey?e?yex?e?xey?e?y???解析:由右边? 2222
?1x?y(e?ex?y?e?x?y?e?x?y?ex?y?ex?y?e?x?y?e?x?y)41ex?y?e?(x?y)x?y?(x?y)?(2e?2e)??ch(x?y)?左边,故知. 42
答案:填入ch?x?y??chxchy?shxshy,ch?x?y??chxchy?shxshy,
sh?x?y??shxchy?chxshy,sh?x?y??shxchy?chxshy四个之一即可.
三.解答题:本大题共5小题,共65分,请给出详细的解答过程. 18.(本小题满分12分)已知函数f(x)?1?sinxcosx.
(1)求函数f(x)的最小正周期和单调递减区间; (2)若tanx?2,求f(x)的值.
12?解答:(1)已知函数即f(x)?1?sin2x,∴T???,………………………3分
223??3??2k?(k?Z),则?k??x??k?(k?Z),
2244?3?即函数f(x)的单调递减区间是[?k?,?k?](k?Z);………………………6分
44令
??2k??2x?sin2x?sinxcosx?cos2xtan2x?tanx?1(2)由已知y?,……………………9分 ?222sinx?cosxtanx?122?2?17∴当tanx?2时,y??. ………………………12分
522?119.(本小题满分12分)在如图所示的多面体ABCDE
E 中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1. F (1)请在线段CE上找到点F的位置,使得恰有直B 线BF∥平面ACD,并证明这一事实; (2)求直线EC与平面ABED所成角的正弦值. A D E
C
B
F
G D A
H
C
解答:如图, (1)由已知AB⊥平面ACD,DE⊥平面ACD,∴AB//ED, 设F为线段CE的中点,H是线段CD的中点,
[来源学科网][来源学*科*网]
//1ED,∴FH?//AB, 连接FH,则FH?……………3分
2∴四边形ABFH是平行四边形,∴BF//AH,
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库湖北省黄冈中学2013届高三11月月考数学文科在线全文阅读。
相关推荐: