77范文网 - 专业文章范例文档资料分享平台

生活中的一些概率问题

来源:网络收集 时间:2020-04-16 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

摘 要

随着科学技术的迅速发展和计算机的普及应用,概率论正广泛的应用到各个行业,它与我们的生活密切相关.在我们的生活中,有许多问题都可以直接或间接的利用概率论来解决.本文从概率论的基础出发,通过在日常生活中包括生日缘分、博彩、抽奖、比赛等以及商品买卖与贮存和其他一些特殊的例子来说明概率论的重要性.

关键词:概率论、生日缘分、博彩、比赛、商品买卖与贮存.

Abstract

With the rapid development of science and technology and the popularization

of computer applications, probability theory is widely applied to various industnss, it is closely related to our lives. In our lives, there are many problems can be directly or indirectly, the use of probability theory to resolve. In this paper, probability theory, basis, by fate in their daily lives, including birthdays, gaming, sweepstakes, contests, etc. as well as commodity trading and storage and some other specific examples to illustrate the importance of probability theory.

Key word: Probability theory, birthday fate, gaming, competition, commodities trading and storage.

目 录

一、引言

二、概率论的介绍

(一)定义·······························································································(01) (二)基本理论与方法···········································································(01) (1)古典概率·················································································(01)

(2)条件概率·················································································(02) (3)离散型随机变量·····································································(02) (4)连续型随机变量及其密度函数·············································(03) (5)大树定律及中心极限定理·····················································(03)

三、概率论的应用

(一)生日缘分·······················································································(04) (二)博彩·······························································································(04) (三)抽奖·······························································································(06) (一)比赛·······························································································(08) (一)商品贮存于买卖···········································································(09) (一)其他一些例子···············································································(12)

四、总结

·······································································································(13)

参考文献 ··················································································· (14) 致谢 ··························································································· (15)

浅析生活中的一些概率问题

一、引言

概率论是一门相当有趣的数学分支,它所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性.“概率”是现行告知和哪个数学大纲中的必修内容,概率最早起源于对赌博问题的研究,十七世纪帕斯卡、惠更斯等数学家对“合理分配赌注”问题进行了深入广泛的研究,并作了系统的归纳总结,于是便出现了概率论,随着社会的发展,概率论在工农业生产、国名经济、现代科学技术等方面具有广泛的应用,在日常生活中,概率论的应用更是普遍,几乎无处不在,本文从生日缘分,博彩,抽奖,比赛,商品贮存等方面举例说明概率论在生活中的重要应用.让人们更深刻的了解概率论与生活的密切联系.

二、概率论的介绍

(一)、定义

概率论与数理统计是数学的一门分支.在自然现象和社会现象中,有一些现象就其个别来说是无规则的,但是通过大量的试验和观察以后,就其整体来说却呈现出一种严格的非偶然的规律性.这些现象称为“随机现象”.概率论就是研究这种“随机现象”规律性的一门学科. (二)、基本理论与方法 (1) 古典概率;

在古代较早的时候,在一些特殊情形下,人们利用研究对象的物理或几何性质所具有的对称性,确定概率的一种方法如下:

对于某一随机试验,如果它的全体基本事件E1,E2,...,En是有穷的,且具有等可能性,则对任意事件A,对应的概率P(A)由下式计算:

P(A)?并把它称作古典概率.

事件A包含的基本事件数(k)

基本事件总数(n)

(2)条件概率;

在实际问题中,一般除了要考虑事件A的概率P(A),还要考虑在“已知事件B已发生”这一条件下,事件A发生的概率,一般地说,后者发生的概率与前者的概率未必相同.为了区别起见,我们把后者叫作条件概率,记为P(AB)或

PB(A),读作在条件B下,事件A的条件概率.

条件概率的定义:

定义1. 4. 1 设(?,?,P)为一概率空间,A??,B??,且P(B)>0,在“已知事件B已经发生”的条件下,“事件A发生”的条件概率P(AB)定义为:

P(AB)?由条件概率的定义可得:

P(A?B)

P(B)P(AB)?P(AB)P(B) P(AB)?P(BA)P(A)

定理 1. 4. 1 (全概率公式)

?的一个有穷部分,且 设(?,?,P)为一概率空间,A1,A2,...,An是

P(Ai)>0(i?1,2,3,...,n).则对于与A1,A2,...,An中的每一个发生有关的事件B??,有

P(B)??P(BAi)P(Ai)

i?1n式称为全概率公式. (3)离散型随机变量;

定义2. 1. 2 设?为离散型随机变量,亦即?的一切可能值为x1,x2,...xn,...记

pn?P(??xn)(n?1,2,...),称p1,p2,...,pn,...为?的分布列,亦称为?的概率

函数.

由上述可知,若?为随机变量,则Pn有意义.

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库生活中的一些概率问题在线全文阅读。

生活中的一些概率问题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/975090.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: