{ 1 , 4 } , { 2 ,
3 } , { 2 , 4 }和{ 3 , 4
}。首先从最后一个子集开始,它是不可行的,故将其抛弃,剩下的子集经求解分别得到如下结果:[ 1 , 1 , 0 , 0 ] , [
1 , 0 , 1 , 0 ] , [ 1 , 0 , 0 , 1 ] , [ 0 , 1 , 1 , 0 ]和[ 0 , 1 , 0 , 1 ],这些结果中最后一个价值为2 3,它的值比k= 0和k= 1时获得的解要高,这个答案即为启发式方法产生的结果。
这种修改后的贪婪启发方法称为k阶优化方法(k - o p t i m a l)。也就是,若从答案中取出k 件物品,并放入另外k
件,获得的结果不会比原来的好,而且用这种方式获得的值在最优值的( 1 0 0 / (k + 1 ) ) %以内。当k=
1时,保证最终结果在最佳值的5 0 %以内;当k= 2时,则在3 3 . 3 3 %以内等等,这种启发式方法的执行时间随k 的增大而增加,需要测试的子集数目为O (nk ),每一个子集所需时间为O (n),因此当k >0时总的时间开销为O (nk+1
)。实际观察到的性能要好得多。
----------------------------------------------
plot(100+t+15*cos(3.05*t),t=0..200,coords=polar,axes=none,scaling=constrained);
2004-5-27 19:39:53
b
等级:职业侠客 文章:470 积分:956 门派:黑客帝国 注册:2003-8-28
第 6 楼
1.3.3 拓扑排序
一个复杂的工程通常可以分解成一组小任务的集合,完成这些小任务意味着整个工程的完成。例如,汽车装配工程可分解为以下任务:将底盘放上装配线,装轴,将座位装在底盘上,上漆,装刹车,装门等等。任务之间具有先后关系,例如在装轴之前必须先
将底板放上装配线。任务的先后顺序可用有向图表示——称为顶点活动(
Activity On Vertex, AOV)网络。有向图的顶点代表任务,有向边(i, j) 表示先后关系:任务j 开始前任务i
必须完成。图1 - 4显示了六个任务的工程,边( 1 , 4)表示任务1在任务4开始前完成,同样边( 4 ,
6)表示任务4在任务6开始前完成,边(1 , 4)与(4 , 6)合起来可知任务1在任务6开始前完成,即前后关系是传递的。由此可知,边(1 , 4)是多余的,因为边(1 , 3)和(3 , 4)已暗示了这种关系。
在很多条件下,任务的执行是连续进行的,例如汽车装配问题或平时购买的标有“需要装配”的消费品(自行车、小孩的秋千装置,割草机等等)。我们可根据所建议的顺序来装配。在由任务建立的有向图中,边(
i, j)表示在装配序列中任务i 在任务j 的前面,具有这种性质的序列称为拓扑序列(topological
orders或topological sequences)。根据任务的有向图建立拓扑序列的过程称为拓扑排序(topological
sorting)。图1 - 4的任务有向图有多种拓扑序列,其中的三种为1 2 3 4 5 6,1 3 2 4 5 6和2 1 5 3
4 6,序列1 4 2 3 5 6就不是拓扑序列,因为在这个序列中任务4在3的前面,而任务有向图中的边为( 3 , 4),这种序列与边( 3 ,
4)及其他边所指示的序列相矛盾。可用贪婪算法来建立拓扑序列。算法按从左到右的步骤构造拓扑序列,每一步在排好的序列中加入一个顶点。利用如下贪婪准则来选择顶点:从剩下的顶点中,选择顶点w,使得w 不存在这样的入边( v,w),其中顶点v 不在已排好的序列结构中出现。注意到如果加入的顶点w违背了这个准则(即有向图中存在边( v,w)且v 不在已构造的序列中),则无法完成拓扑排序,因为顶点v 必须跟随在顶点w 之后。贪婪算法的伪代码如图1 3 -
5所示。while 循环的每次迭代代表贪婪算法的一个步骤。 现在用贪婪算法来求解图1 -
4的有向图。首先从一个空序列V开始,第一步选择V的第一个顶点。此时,在有向图中有两个候选顶点1和2,若选择顶点2,则序列V =
2,第一步完成。第二步选择V的第二个顶点,根据贪婪准则可知候选顶点为1和5,若选择5,则V = 2
5。下一步,顶点1是唯一的候选,因此V = 2 5 1。第四步,顶点3是唯一的候选,因此把顶点3加入V
得到V = 2 5 1 3。在最后两步分别加入顶点4和6 ,得V = 2 5 1 3 4 6。 1. 贪婪算法的正确性
为保证贪婪算法算的正确性,需要证明: 1) 当算法失败时,有向图没有拓扑序列; 2) 若
算法没有失败,V即是拓扑序列。2) 即是用贪婪准则来选取下一个顶点的直接结果, 1) 的证明见定理1 3 - 2,它证明了若算法失败,则有向图中有环路。若有向图中包含环qj qj + 1.qk qj , 则它没有拓扑序列,因为该序列暗示了qj
一定要在qj 开始前完成。
定理1-2 如果图1 3 - 5算法失败,则有向图含有环路。 证明注意到当失败时| V | 便是V的一个候选顶点。若q4 为q1 , q2 , q3 中的任何一个,则又可知有向图含有环,因为有向图具有有限个顶点数n,继续利用上述方法,最后总能找到一个环路。 2. 数据结构的选择 为将图1 - 5用C + +代码来实现,必须考虑序列V的描述方法,以及如何找出可加入V的候选顶点。一种高效的实现方法是将序列V用一维数组v 来描述的,用一个栈来保存可加入V的候选顶点。另有一个一维数组I n D e g r e e,I n D e g r e e[ j ]表示与顶点j相连的节点i 的数目,其中顶点i不是V中的成员,它们之间的有向图的边表示为( i, j)。当I n D e g r e e[ j ]变为0时表示j 成为一个候选节点。序列V初始时为空。I n D e g r e e[ j ]为顶点j 的入度。每次向V中加入一个顶点时,所有与新加入顶点邻接的顶点j,其I n D e g r e e[ j ]减1。对于有向图1 - 4,开始时I n D e g r e e [ 1 : 6 ] = [ 0 , 0 , 1 , 3 , 1 , 3 ]。由于顶点1和2的I n D e g r e e值为0,因此它们是可加入V的候选顶点,由此,顶点1和2首先入栈。每一步,从栈中取出一个顶点将其加入V,同时减去与其邻接的顶点的I n D e g r e e值。若在第一步时从栈中取出顶点2并将其加入V,便得到了v [ 0 ] = 2,和I n D e g r e e [ 1 : 6 ] = [ 0 , 0 , 1 , 2 , 0 , 3 ]。由于I n D e g r e e [ 5 ]刚刚变为0,因此将顶点5入栈。 程序1 3 - 2给出了相应的C + +代码,这个代码被定义为N e t w o r k的一个成员函数。而且,它对于有无加权的有向图均适用。但若用于无向图(不论其有无加权)将会得到错误的结果,因为拓扑排序是针对有向图来定义的。为解决这个问题,利用同样的模板来定义成员函数AdjacencyGraph, AdjacencyWGraph,L i n k e d G r a p h和L i n k e d W G r a p h。这些函数可重载N e t w o r k中的函数并可输出错误信息。如果找到拓扑序列,则Topological 函数返回t r u e;若输入的有向图无拓扑序列则返回f a l s e。当找到拓扑序列时,将其返回到v [ 0 :n- 1 ]中。 3. Network:Topological 的复杂性 第一和第三个f o r循环的时间开销为(n )。若使用(耗费)邻接矩阵,则第二个for 循环所用的时间为(n2 );若使用邻接链表,则所用时间为(n+e)。在两个嵌套的while 循环中,外 层循环需执行n次,每次将顶点w 加入到v 中,并初始化内层while 循环。使用邻接矩阵时,内层w h i l e循环对于每个顶点w 需花费(n)的时间;若利用邻接链表,则这个循环需花费dwout 的时间,因此,内层while 循环的时间开销为(n2 )或(n+e)。所以,若利用邻接矩阵,程序1 3 - 2的时间复杂性为(n2 ),若利用邻接链表则为(n+e)。 程序13-2 拓扑排序 bool Network::Topological(int v[]) {// 计算有向图中顶点的拓扑次序 // 如果找到了一个拓扑次序,则返回t r u e,此时,在v [ 0 : n - 1 ]中记录拓扑次序 // 如果不存在拓扑次序,则返回f a l s e int n = Ve r t i c e s ( ) ; // 计算入度 int *InDegree = new int [n+1]; InitializePos(); // 图遍历器数组 for (int i = 1; i <= n; i++) // 初始化 InDegree[i] = 0; for (i = 1; i <= n; i++) {// 从i 出发的边 int u = Begin(i); while (u) { I n D e g r e e [ u ] + + ; u = NextVe r t e x ( i ) ; } } // 把入度为0的顶点压入堆栈 LinkedStack for (i = 1; i <= n; i++) if (!InDegree[i]) S.Add(i); // 产生拓扑次序 i = 0; // 数组v 的游标 while (!S.IsEmpty()) {// 从堆栈中选择 int w; // 下一个顶点 S . D e l e t e ( w ) ; v[i++] = w; int u = Begin(w); while (u) {// 修改入度 I n D e g r e e [ u ] - - ; if (!InDegree[u]) S.Add(u); u = NextVe r t e x ( w ) ; } } D e a c t i v a t e P o s ( ) ; delete [] InDegree; return (i == n); } ---------------------------------------------- plot(100+t+15*cos(3.05*t),t=0..200,coords=polar,axes=none,scaling=constrained); 2004-5-27 19:40:10 b 等级:职业侠客 文章:470 积分:956 门派:黑客帝国 注册:2003-8-28 第 7 楼 1.3.4 二分覆盖 二分图是一个无向图,它的n 个顶点可二分为集合A和集合B,且同一集合中的任意两个顶点在图中无边相连(即任何一条边都是一个顶点在集合A中,另一个在集合B中)。当且仅当B中的每个顶点至少与A中一个顶点相连时,A的一个子集A' 覆盖集合B(或简单地说,A' 是一个覆盖)。覆盖A' 的大小即为A' 中的顶点数目。当且仅当A' 是覆盖B的子集中最小的时,A' 为最小覆盖。 例1-10 考察如图1 - 6所示的具有1 7个顶点的二分图,A={1, 2, 3, 16, 17}和B={4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15},子集A' = { 1 , 1 6 , 1 7 }是B的最小覆盖。在二分图中寻找最小覆盖的问题为二分覆盖( b i p a r t i t e - c o v e r)问题。在例1 2 - 3中说明了最小覆盖是很有用的,因为它能解决“在会议中使用最少的翻译人员进行翻译”这一类的问题。 二分覆盖问题类似于集合覆盖( s e t - c o v e r)问题。在集合覆盖问题中给出了k 个集合S= {S1 , S2 ,., Sk },每个集合Si 中的元素均是全集U中的成员。当且仅当Èi S'Si =U时,S的子集S' 覆盖U,S 百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库中国数学建模-编程交流-贪婪算法 - 1(3)在线全文阅读。
相关推荐: