九年级数学下提高班讲义(三) 第6页 共8页
况进行调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行预测,提供了两个方面的信息,如图所示,请你根据图象提供的信息说明: (1)在3月从份出售这种蔬菜,每千克的收益是多少 元? (2)哪个月出售这种蔬菜,每千克的收益最大?说明理由。 每千克售价(元)每千克成本(元)
55 4433
22 11 01234567月01234567月 甲乙
5、某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体鱼池,培育不同品种的鱼苗,他已备足可以修高为1.5m,长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度) (1)若想水池的总容积为36m,x应等于多少?
(2)求水池的容积V与x的函数关系式,并直接写出x的取值范围; (3)若想使水池的总容积V最大,x应为多少?最大容积是多少?
3
6、大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电.
九年级数学下提高班讲义(三) 第7页 共8页
通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数,其图象如图所示. (1)求y与x的函数关系式.
(2)设王强每月获得的利润为p(元),求p与x之间的函数关系式;如果王强想要每月获得2400元的利润,那么销售单价应定为多少元?
7、某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
8、某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,
九年级数学下提高班讲义(三) 第8页 共8页
一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式; (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
9、某企业投资100万元引进一条农产品加工线,若不计维修、保养费用,预计投产后每年可获利33万元,该生产线投资后,从第1年到第x年的维修、保养费用累计为y(万元),且y?ax2?bx,若第1年的维修、保养费用为2万元,第2年为4万元。 (1)求y与x之间的关系式;
(2)投产后,这个企业在第几年纯利润最大?第几年就能收回投资?
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库九年级数学(下)提高班讲义(三) - 二次函数的实际应用(2)在线全文阅读。
相关推荐: