7.平面内的两条直线有相交和平行两种位置关系.
(1)如图1,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.
(2)如图2,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.
(2)如图3,写出∠BPD﹑∠B﹑∠D﹑∠BQD之间的数量关系?(不需证明). (3)如图4,求出∠A+∠B+∠C+∠D+∠E+∠F的度数.
解:(1)过点P作PE∥AB,
∵AB∥CD, ∴AB∥EP∥CD,
∴∠B=∠1=50°,∠D=∠2=30°, ∴∠BPD=80°;
(2)∠B=∠BPD+∠D.
理由如下:设BP与CD相交于点O,
∵AB∥CD, ∴∠BOD=∠B,
在△POD中,∠BOD=∠BPD+∠D, ∴∠B=∠BPD+∠D.
(3)如图,连接QP并延长, 结论:∠BPD=∠BQD+∠B+∠D.
(4)如图,由三角形的外角性质,∠A+∠E=∠1,∠B+∠F=∠2, ∵∠1+∠2+∠C+∠D=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
8.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
第11页(共13页)
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;
(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;
(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°. 解:(1)如图1,∵∠1与∠2互补, ∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE, ∴∠AEF+∠CFE=180°, ∴AB∥CD;
(2)如图2,由(1)知,AB∥CD, ∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P, ∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°, ∴∠EPF=90°,即EG⊥PF. ∵GH⊥EG, ∴PF∥GH;
(3)∠HPQ的大小不发生变化,理由如下: 如图3,∵∠1=∠2, ∴∠3=2∠2. 又∵GH⊥EG,
∴∠4=90°﹣∠3=90°﹣2∠2. ∴∠EPK=180°﹣∠4=90°+2∠2. ∵PQ平分∠EPK,
∴∠QPK=∠EPK=45°+∠2.
∴∠HPQ=∠QPK﹣∠2=45°,
∴∠HPQ的大小不发生变化,一直是45°.
第12页(共13页)
11.画图并填空:
如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移2倍,再向右平移3格. (1)请在图中画出平移后的△A′B′C′;
(2)在图中画出△的A′B′C′的高C′D′(标出点D′的位置);
(3)如果每个小正方形边长为1,则△A′B′C′的面积= .(答案直接填在题中横线上)
第13页(共13页)
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库第 2讲 初一相交线与平行线动点提高题压轴题(3)在线全文阅读。
相关推荐: