77范文网 - 专业文章范例文档资料分享平台

人教版七年级数学下册全册教案

来源:网络收集 时间:2019-02-16 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

数学教案(七年级下册)

10.1统计调查(二)

教学目标1、经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;2、初步感受抽样调查的必要性,初步体会用样本估计总体的思想。

教学重点: 抽样调查、样本、总体等概念以及用样本估计总体的思想 教学难点:样本的抽取 教学过程 一、问题导入

要了解一罐八宝粥里各种成分的比例,你会怎么做?把一罐八宝粥铺开在一个盆子里查看。这样可行吗?这样方便吗?为此我们必须找到一种方便合理的调查方法才行。 二、抽样调查及有关概念

问题2某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,怎样进行调查?

可以用全面调查的方法对全校学生逐个进行调查,然后整理收集到的数据,统计出全校学生对四类电视节目的喜爱情况。

这样做,当然好,可以准确、全面地了解情况。但是,由于学生人数比较多,这样做又会有许多弊病,你能说说吗?

花费的时间长,消耗的人力、物力大。你能找到一种既省时省力又能解决问题的调查方法吗? 可以抽取一部分学生进行调查.

这种只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的方法就是抽样调查。这里要考查的全体对象称为总体,组成总体的每一个考查对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。上面问题中全校学生是总体,每一名学生是个体,我们从总体中抽取的部分学生是一个样本,抽取的学生数就是样本容量。例如抽取100名学生,样本容量就是100。

注意:抽样调查还适用一些具有破坏性的调查,如关于灯泡寿命、火柴质量等。 三、样本的抽取

抽样调查的关键是样本的抽取,如果抽取的样本得当,就能很好地反映总体的情况,否则,抽样调查的结果会偏离总体情况。上面的问题,抽取样本的要求是什么呢?

一、抽取的学生数目要适当。如果抽取的学生数太少,那么样本就不能很好地反映总体的情况;如果抽取的学生人数太多,那么达不到省时省力的目的。我们可以取100名学生作为一个样本。

二、要尽量使每一个学生抽取到的机会相等。例如,可以在2000名学生的注册学号中,用电脑随机抽取100个学号,调查这些学号对应的100名学生。

你还能想出使每个学生都有相等机会被抽到的方法吗?

从2000名学生的注册学号中,用电脑抽取能被5整除的100个学号,调查这些学号对应的学生;放学或上学时在校门口随机访问100名学生,等等。

这种总体中的每一个个体都有相等机会被抽到的抽样方法是一种简单随机抽样。 现在你能回答“要了解一罐八宝粥里各种成分的比例,你会怎么做?”这个问题了吗? 搅拌均匀后,舀一勺查看,用所得的结果估计这罐八宝粥成分的比例。 四、样本的处理

和全面调查一样,对收集的数据要进行整理。下面是某同学抽取样本容量为100的调查数据统计表。[投影3]

抽样调查100名学生最喜爱节目的人数统计表 节目类型 A新闻 B体育 C动画

划记 正 正正正正 正正正正正正

人数 8 24 30

第1页共9页

百分比 8% 24% 30%

数学教案(七年级下册)

D娱乐 合计

正正正正正正正 100

38 100

38% 100%

从上表可以看出,样本中喜爱娱乐节目的学生最多,是38%,据此可以估计出,这个学校的学生中,喜欢娱乐节目的人最多,约为38%。类似地,由上表可以估计这个学校喜爱其他节目的学生人数的百分比。

表格中的数据也可以用条形统计图和扇形统计图来表示描述。 人数 40 30 20 8 10 0 24 30 38 娱乐

8% 38% 24% 30% 动画

五、课堂练习:课本P155练习1、2、3。 六、课堂小结

1、个体、总体、样本、样本容量及抽样调查的概念;

2、抽取样本的要求:(1)抽取的样本容量要适当;(2)要尽量使每一个个体被抽取到的机会相等——简单随机抽样。

3、全面调查和抽样调查的优缺点是什么?

全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;抽样调查具有花费少、省时的特点,但没有全面调查准确,受样本选取的影响比较大。

作业:课本P155第3、4题,P160第6、9题。

10.1统计调查(三)

教学目标1、经历较复杂问题的处理过程,感受分层抽样的必要性,掌握分层抽样的方法;2、学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。

教学重点:分层抽样的方法和样本的分析、归纳 教学难点:分层抽样方案的制定 教学过程 一、复习导入

什么是抽样调查?什么是简单随机抽样?

仔细观察我们身边周围,抽样调查的应用是十分普遍的。有些问题总体量不大,个体差异程度小,只需进行简单随机抽样就可以了,有些问题总体量大,个体差异程度较大,必须有更好的抽样方法才行。 二、分层抽样

问题3某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐四类节目的喜爱情况。 (1)能不能用问题2中对学生的调查数据去估计整个地区电视观众的情况呢?为什么? 不能。一是样本容量太小;二是学生、成年人、老年人喜欢的电视节目往往有明显不同. 所以要了解整个地区观众的情况,需要在更大范围内抽取样本。 (2)如果抽取一个容量为1000的样本进行调查,你会怎样调查?

由于各年龄段对节目爱好有明显的不同,而同一个年龄段对节目的喜爱又存在共性,因此可以对青少年、成年人、老年人各人群分别独立进行简单随机抽样,使每个年龄段都能抽取一定的人数来代表所在的人群,然后汇总

第2页共9页

新闻

体育

新闻 体育 动画 娱乐 节目类别 数学教案(七年级下册)

调查结果。

这里还有一个问题,每个年龄段抽取的人数怎么确定呢?

可以根据各年龄段实际人口的比例分配,以确保每一个年龄段都有相应比例的代表。 如果青少年、成年人、老年人的人数比例为2︰5︰3,那么各年龄段抽取的人数分别是多少?

抽取的人数

青少年 200

成年人 500

老年人 300

合计 1000

先将总体分成几个年龄段(层),然后再在各年龄段(层)中进行简单随机抽样,这是一种分层抽样。 分层抽取的样本与这个地区所有观众的年龄结构基本相同,与在整个地区直接进行简单随机抽样相比,更具有代表性。

三、样本的分析:下表是用分层抽样进行调查并整理得到的数据。

人数年龄 节目类型段 A新闻 B体育 C动画 D娱乐 合计

青少年 16 50 56 78 200

成年人 137 118 57 188 500

老年人 120 82 28 70 300

合计 273 250 141 336 1000

百分比 27.3% 25% 14.3% 33.6% 100%

请你自己画条形统计图和扇形统计图描述上表中的数据。

从上表中可以大致估计整个地区观众对四种节目的喜爱情况,你能谈谈吗? 此外,还可以估计各个年龄段中观众对某类节目喜爱的情况。 例如,估计各个年龄段中观众对动画类节目和娱乐类节目喜爱的情况。

能根据上表中的数据进行估计吗?为什么?不能。因为不同年龄层抽取的人数不相等。 那么根据什么来进行估计呢?

可根据不同年龄层中喜爱动画和娱乐类节目的百分比来估计。如表:

动画 娱乐

39% 青少年 28%

成年人 11.2% 37.6%

老年人 9.3% 23.3%

从表中你看到了什么?不同年龄段的观众对节目喜爱不尽相同。 用什么方式可以直观地反映这种变化呢?折线统计图。 下图是不同年龄段观众喜爱娱乐和动画类节目的折线统计图。

第3页共9页

数学教案(七年级下册)

百分率 40% 30% 20% 10% 0% 娱乐 动画

青少年 成年人 老年人 年龄段

从上图中可以清楚地看到,随着年龄的增加,观众对动画类、娱乐类的喜爱程度逐渐下降。 四、课堂练习:课本P158练习1、2、3. 五、课堂小结

1、对于总体量大,个差异程度较大的问题,需要采取分层抽样的方法确定样本,这样可使样本更具有代表性。 2、对样本进行分析、归纳,得出的结论可以用来估计总体的情况,这就是统计的思想。 布置作业:课本P160第8、10、11题。

10.2直方图(一)

教学目标1、理解频数、频数分布的意义,学会制作频数分布表;2、学会画频数分布直方图和频数折线图。 教学重点:学会画频数分布直方图 教学难点:确定组距和组数 教学过程

一、导入新课

收集数据、整理数据、描述数据是统计的一般过程。我们学习了条形图、折线图、扇形图等描述数据的方法,今天我们学习另一种描述数据的统计图——直方图。 二、频数分布直方图

问题4为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛。为此收集到这63名同学的身高(单位:㎝)如下:

158 168 159 149 162 155 156

158 158 167 163 163 156 157

160 154 170 163 157 165 153

168 158 153 162 162 166 165

159 154 160 172 162 156 159

159 169 160 161 161 154 157

151 158 159 153 157 166 155

158 158 159 156 157 164 164

159 158 160 162 164 165 156

选择身高在哪个范围的学生参加呢?

为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即在哪些身高范围内的学生比较多。 为此我们把这些数据适当分组来进行整理。 1、计算最大值与最小值的差(极差)

2、最小值是149,最大值是172,它们的差是23。说明身高的变化范围是23㎝. 2、决定组距与组数

把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。 作等距分组(各组的组距相同),取组距为3㎝(从最小值起每隔3㎝作为一组)。 最大值-最小值232==7

组距33将数据分成8组:149≤x<152,152≤x<155,?,170≤x<173. 注意:①根据问题的需要各组的组距可以相同或不同;

第4页共9页

数学教案(七年级下册)

②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;

③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多。 3、频数分布表

对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数)。用表格整理可得频数分布表:

频数分布表

身高分组 149≤x<152 152≤x<155 155≤x<158 158≤x<161 161≤x<164 164≤x<167 167≤x<170 170≤x<173

划记 正一 正正 正正正 正正 正 频数 2 6 12 19 10 8 4 2

从表格中你能看出应从哪个范围内选队员吗?

可以看出,身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,一共有12+19+10=41人,因此,可以从身高在155~164㎝(不含164㎝)的学生中选队员。 4、画频数分布直方图

为了更直观形象地看出频数分布的情况,可以根据上表画出频数分布直方图。

频数/组距 7 6 5 4 3 2 1 0 149 152 155 158 161 164 167 170 173 身高(㎝)

上面小长方形的面积表示什么意义? 小长方形的面积=组距×频数=频数.

组距可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的多少。

等距分组时,各小长方形的面积(频数)与高的比是常数(组距)。因此,画等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数。 这样,上面的频数分布图可画成下面的形式:

频数 2110 5 0 149 152 155 158 161 164 167 170 173 身高(㎝)

三、频数分布折线图

在频数分布直方图的基础上,我们还可以用频数折线图来描述频数的分布情况。

第5页共9页

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库人教版七年级数学下册全册教案在线全文阅读。

人教版七年级数学下册全册教案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/zonghe/476518.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: