EVIEWS在计量经济学教学过程中的演示示例——陈冬冬(川农经管)
3、 在主窗口菜单选在QUICK-ESTIMATE EQUATION,对参数做OSL估计,输出结
果见下表:
Variable C X1 X2 X3 X4 X5 X6 X7 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Coefficient 139.2362 -0.051954 0.127532 -24.29427 0.863283 0.330914 -0.070015 0.002305 Std. Error 718.2493 0.090753 0.132466 97.48792 0.186798 0.105592 0.025490 0.019087 t-Statistic 0.193855 -0.572483 0.962751 -0.249203 4.621475 3.133889 -2.746755 0.120780 Prob. 0.8495 0.5776 0.3547 0.8074 0.0006 0.0086 0.0177 0.9059 0.999222 Mean dependent var 5153.350 0.998768 S.D. dependent var 88.17626 Akaike info criterion 93300.63 Schwarz criterion -112.8573 F-statistic 1.703427 Prob(F-statistic) 2511.950 12.08573 12.48402 2201.081 0.000000 Y = 139.2361608 - 0.05195439459*X1 + 0.1275320853*X2 - 24.294272*X3 + 0.8632825292*X4 + 0.330913843*X5 - 0.07001518918*X6 + 0.002305379405*X7
二、分析
由F=2201.081>F0.05(7,12)=2.91(显著性水平a=0.05),表明模型从整体上看钢材供应量与解释变量之间线性关系显著。 三、检验
计算解释变量之间的简单相关系数。EVIEWS过程如下:
1、 主菜单QUICK-GROUP STATISTICS-CORRRELATION,在对话框中输入X1 X2 X3 X4 X5 X6 X7,结果如下:
X1 X2 X3 X4 X5 X6 X7
X1
X2
X3 0.975474 0.964400 1.000000 0.974809 0.894963 0.913344 0.982943
X4 0.931882 0.994921 0.974809 1.000000 0.959613 0.969105 0.945444
X5 0.826401 0.969686 0.894963 0.959613 1.000000 0.996169 0.827643
X6 0.845837 0.972530 0.913344 0.969105 0.996169 1.000000 0.846079
X7 0.986815 0.931689 0.982943 0.945444 0.827643 0.846079 1.000000
1.000000 0.921956 0.921956 1.000000 0.975474 0.964400 0.931882 0.994921 0.826401 0.969686 0.845837 0.972530 0.986815 0.931689
2、由上表可以看出,解释变量之间存在高度线性相关性。尽管方程整体线性回归拟合较好,但X1 X2 X3 X7变量的参数t值并不显著, X3 X6 系数的符号与经济意义相悖。表明模型确实存在严重的多重共线性。
四、修正
1、运用OLS方法逐一求Y对各个解释变量的回归。结合经济意义和统计检验选出拟合效果最好的一元线性回归方程。
6
EVIEWS在计量经济学教学过程中的演示示例——陈冬冬(川农经管)
Variable Coefficient Std. Error t-Statistic Prob. C -10123.78 1528.060 -6.625250 0.0000 X1 1.181784 0.116936 10.10629 0.0000 R-squared
0.850171 Mean dependent var 5153.350 Adjusted R-squared 0.841847 S.D. dependent var 2511.950 S.E. of regression 998.9623 Akaike info criterion 16.74595 Sum squared resid 17962663 Schwarz criterion 16.84552 Log likelihood -165.4595 F-statistic 102.1371 Durbin-Watson stat 0.217842 Prob(F-statistic) 0.000000 Variable Coefficient Std. Error t-Statistic Prob. C -618.7199 108.3930 -5.708116 0.0000 X2
0.926212
0.016019
57.82017
0.0000 R-squared
0.994645 Mean dependent var 5153.350 Adjusted R-squared 0.994347 S.D. dependent var 2511.950 S.E. of regression 188.8610 Akaike info criterion 13.41454 Sum squared resid 642032.9 Schwarz criterion 13.51411 Log likelihood -132.1454 F-statistic 3343.172 Durbin-Watson stat
0.962290 Prob(F-statistic) 0.000000
Variable Coefficient Std. Error t-Statistic Prob. C -3770.942 581.6642 -6.483023 0.0000 X3
926.7178
58.38537
15.87243
0.0000 R-squared
0.933317 Mean dependent var 5153.350 Adjusted R-squared 0.929612 S.D. dependent var 2511.950 S.E. of regression 666.4367 Akaike info criterion 15.93641 Sum squared resid 7994483. Schwarz criterion 16.03598 Log likelihood -157.3641 F-statistic 251.9341 Durbin-Watson stat
0.477559 Prob(F-statistic)
0.000000
Variable Coefficient Std. Error t-Statistic Prob. C -34.32474 91.75324 -0.374098 0.7127 X4 0.884047 0.014146 62.49381 0.0000 R-squared
0.995412 Mean dependent var 5153.350 Adjusted R-squared 0.995157 S.D. dependent var 2511.950 S.E. of regression 174.8044 Akaike info criterion 13.25985 Sum squared resid 550018.2 Schwarz criterion 13.35942 Log likelihood -130.5985 F-statistic 3905.476 Durbin-Watson stat
0.824221 Prob(F-statistic) 0.000000
Variable
Coefficient
Std. Error
t-Statistic
Prob.
7
EVIEWS在计量经济学教学过程中的演示示例——陈冬冬(川农经管)
C X5 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat 2896.350 0.572451 211.0245 0.036983 13.72518 15.47892 0.0000 0.0000 2511.950 15.98319 16.08276 239.5971 0.000000 0.930123 Mean dependent var 5153.350 0.926241 S.D. dependent var 682.2088 Akaike info criterion 8377359. Schwarz criterion -157.8319 F-statistic 0.181794 Prob(F-statistic)
Variable C X6 R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
Coefficient 2720.664 0.108665 Std. Error 205.3405 0.006568 t-Statistic 13.24952 16.54535 Prob. 0.0000 0.0000 0.938303 Mean dependent var 5153.350 0.934875 S.D. dependent var 641.0376 Akaike info criterion 7396725. Schwarz criterion -156.5869 F-statistic 0.259927 Prob(F-statistic) Coefficient -9760.099 0.106826
Std. Error 1317.227 0.009326
t-Statistic -7.409582 11.45524
2511.950 15.85869 15.95827 273.7485 0.000000
Prob. 0.0000 0.0000
Variable C X7
R-squared
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat
0.879375 Mean dependent var 5153.350 0.872673 S.D. dependent var 896.3356 Akaike info criterion 14461517 Schwarz criterion -163.2915 F-statistic 0.183657 Prob(F-statistic)
2511.950 16.52915 16.62872 131.2225 0.000000
经分析在7个一元回归模型中钢材供应量Y对电力产量X4的线性关系强,拟合度好,即:
Y = -34.32474492 + 0.8840472792*X4
(-0.374098) (62.49381)
R2= 0.995412 S.E.=174.8044,F=3905.476
截距项不显著,去掉,重新估计:
Y = 0.8792594492*X4
2、逐步回归。
将其余解释变量逐一代入上式,得如下模型:
Y = -0.005935225118*X1 + 0.8906555628*X4
(-0.604681) (45.03888)
R2= 0.995469 S.E.=173.7270, F=3954.290
式中X1不显著,删去,继续:
8
EVIEWS在计量经济学教学过程中的演示示例——陈冬冬(川农经管)
Y = 0.1741981867*X2 + 0.6978252624*X4
(1.879546) (7.217200)
R2= 0.996135 S.E.=160.4431, F=4639.290
Y = 0.2753793175*X2 + 0.5595511241*X4 + 0.04060861466*X5
(3.082485) (5.637333) (2.615818)
R2= 0.997244 S.E.=139.4060, F=3075.985
Y = 0.466836912*X2 + 0.5219953469*X4 - 0.03080496295*X5 - 0.004998894793*X7
(3.245804) (5.366654) (-0.674009) (-1.651391)R2= 0.997646 S.E.=132.8222, F=2259.899 X7不符合经济意义,应去掉。
所以:
Y = 0.2753793175*X2 + 0.5595511241*X4 + 0.04060861466*X5
(3.082485) (5.637333) (2.615818)
R2= 0.997244 S.E.=139.4060, F=3075.985 即为最优模型。
Dependent Variable: Y Method: Least Squares Date: 10/17/05 Time: 22:53 Sample: 1978 1997 Included observations: 20
Variable Coefficient Std. Error t-Statistic Prob. X2 0.275379 0.089337 3.082485 0.0068 X4 0.559551 0.099258 5.637333 0.0000 X5 0.040609 0.015524 2.615818 0.0181 R-squared
0.997244 Mean dependent var 5153.350 Adjusted R-squared 0.996920 S.D. dependent var 2511.950 S.E. of regression 139.4060 Akaike info criterion 12.85014 Sum squared resid 330378.5 Schwarz criterion 12.99950 Log likelihood -125.5014 F-statistic 3075.985 Durbin-Watson stat
0.790639 Prob(F-statistic)
0.000000
9
EVIEWS在计量经济学教学过程中的演示示例——陈冬冬(川农经管)
EVIEWS在计量经济学教学过程
中的演示示例(三)
目的:1、正确使用EVIEWS
2、能根据计算结果进行序列相关性检验和补救。 3、数据为demo data3
实例:国内生产总值和出口总额之间的关系分析(序列相关性检验及补救)
根据某地区1978-1998年国内生产总值与出口总额的数据资料,其中X表示国内生产总值(人民币亿元),Y表示出口总额(人民币亿元)。试建立一元线性回归函数。设模型函数形式为:
Yt??1??2Xt??t
obs 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
X 3624.100 4038.200 4517.800 4860.300 5301.800 5957.400 7206.700 8989.100 10201.40 11954.50 14922.30 16917.80 18598.40 21622.50 26651.90 34560.50 46670.00 57494.90 66850.50 73142.70 78017.80
Y 134.8000 139.7000 167.6000 211.7000 271.2000 367.6000 413.8000 438.3000 580.5000 808.9000 1082.100 1470.000 1766.700 1956.000 2985.800 3827.100 4676.300 5284.800 10421.80 12451.80 15231.70
1、用OLS估计方法求模型的参数估计值
点击NEW-WORKFILE,输入X,Y的数据。
点击QUICK-ESITMATE EQUATION,在对话框中输入Y C X,结果如下:
10
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说综合文库EVIEWS在计量经济学教学过程中的演示示例(2)在线全文阅读。
相关推荐: